首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1 cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1-/- mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.  相似文献   

2.
Transition from naive to Ag-experienced effector/memory CD4+ T cells is initiated during contact with APC in secondary lymphoid tissue. Here, we demonstrate that the CXCR5 is a marker for recently activated memory CD4+ T cells. CXCR5 is rapidly induced during contact with Ag-presenting dendritic cells, well before T cell expansion and effector cell development, and is irreversibly lost on terminally differentiated effector cells. Furthermore, immunization of human volunteers with a recall Ag results in rapid accumulation of Ag-responsive, CXCR5-expressing CD4+ T cells in peripheral blood. Early acquisition of a new migration program enables T zone CD4+ T cells to develop into follicular B helper T cells or, alternatively, into circulating memory CD4+ T cells. Together, CXCR5 unequivocally defines pre-effector memory CD4+ T cells generated during ongoing immune responses.  相似文献   

3.
4.
Murine T helper cell clones are classified into two distinct subsets, T helper 1 (Th1) and T helper 2 (Th2), on the basis of cytokine secretion patterns. Th1 clones produce interleukin-2 (IL-2), tumor necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), while Th2 clones produce IL-4, IL-5, IL-6 and IL-10. These subsets differentially promote delayed-type hypersensitivity or antibody responses, respectively. The nuclear factor NF-AT is induced in Th1 clones stimulated through the T cell receptor-CD3 complex, and is required for IL-2 gene induction. The NF-AT complex consists of two components: NF-ATp, which pre-exists in the cytosol and whose appearance in the nucleus is induced by an increase of intracellular calcium, and a nuclear AP-1 component whose induction is dependent upon activation of protein kinase C (PKC). Here we report that the induction of the Th2-specific IL-4 gene in an activated Th2 clone involves an NF-AT complex that consists only of NF-ATp, and not the AP-1 component. On the basis of binding experiments we show that this 'AP-1-less' NF-AT complex is specific for the IL-4 promoter and does not reflect the inability of activated Th2 cells to induce the AP-1 component. We propose that NF-ATp is a common regulatory factor for both Th1 and Th2 cytokine genes, and that the involvement of PKC-dependent factors, such as AP-1, may help determine Th1-/Th2-specific patterns of gene expression.  相似文献   

5.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

6.
7.
8.
9.
The four-transmembrane protein epithelial membrane protein-2 (EMP2) was recently identified as an endometrial protein necessary for blastocyst implantation, but the mechanism of this role is uncertain. In other cell types, EMP2 controls delivery of certain classes of proteins to the cell surface, including various integrin isoforms (a class of receptors implicated in endometrial-blastocyst interaction). Since alphavbeta3 integrin is an important endometrial molecule involved in blastocyst interaction, we evaluated the role of EMP2 in modulating integrin expression in the HEC1A endometrial cell line and endometrial epithelium in vivo. Elevation of EMP2 expression in HEC1A cells selectively increased the expression of alphavbeta3 integrin on the plasma membrane and was functional as judged by increased cell binding to an alphavbeta3 ligand, fibronectin. Conversely, reduction in EMP2 expression using an EMP2 specific ribozyme decreased the cell alphavbeta3 surface expression. The influence of EMP2 on alphavbeta3 integrin was also observed in vivo as reduction of EMP2 using ribozymes or short hairpin RNA diminished alphavbeta3 integrin expression in glandular and luminal uterine epithelium. Colocalization and coimmunoprecipitation studies suggested that EMP2 and alphavbeta3 integrin predominantly exist in a physically associated state. This study demonstrates for the first time the influence of EMP2 on alphavbeta3 surface expression and suggests that surface trafficking of integrin alphavbeta3 by EMP2 during the window of implantation may be a mechanism for its requirement in endometrial-blastocyst interaction.  相似文献   

10.
11.
Lymphocyte homing is initiated by the binding of L-selectin on lymphocytes to its ligands on high endothelial venules (HEV). Sialyl 6-sulfo Lewis X is a major capping group of L-selectin ligands. N-Acetylglucosamine (GlcNAc) 6-sulfation is essential for the ligand activity, and is catalyzed by GlcNAc 6-O-sulfotransferases (GlcNAc6STs) of which GlcNAc6ST-1 and GlcNAc6ST-2 are expressed in HEV. Here, we report that mice deficient in GlcNAc6ST-1 were impaired in the elaboration of sialyl 6-sulfo Lewis X in HEV and that an epitope of L-selectin ligands recognized by the MECA-79 anti-body was greatly reduced or abolished in the abluminal aspect of HEV. Lymphocyte homing to peripheral lymph nodes, mesenteric lymph nodes, and Peyer's patches was significantly reduced in GlcNAc6ST-1 null mice. These results demonstrate that GlcNAc6ST-1 is involved in lymphocyte homing in vivo, and indicate that GlcNAc6ST-1 and -2 play complementary roles. The importance of GlcNAc6ST-1 is particularly high-lighted by its involvement in lymphocyte homing to Peyer's patches where GlcNAc6ST-2 expression is undetectable.  相似文献   

12.
Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin-membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development.  相似文献   

13.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

14.
15.
16.
Previous mouse studies have shown that IL-4 increases the expression of ICOS on activated Th cells, resulting in enhanced ICOS expression on Th2 cells. In this study, we show that ICOS expression on human Th cells is not increased by IL-4, but by IL-12 and by IL-23 instead. Consequently, ICOS expression during IL-12-driven Th1 cell polarization was transiently increased compared with the levels on Th0 cells and IL-4-driven Th2 cells. Addition of IL-12 and/or IL-23 during restimulation increased ICOS expression to the same extent on pre-established Th1, Th2, and Th0 cells, indicating that ICOS levels are not stably imposed by prior polarization. In contrast to the findings in the mouse, IL-4 significantly suppressed the ICOS-enhancing effects of IL-12 and IL-23. The functional consequence of variable ICOS levels was shown in coculture experiments with cells expressing the ICOS-ligand B7-related protein 1 (either transfected Chinese hamster ovary cells or autologous dendritic cells). Ligation of ICOS on 2-day-preactivated effector cells increased their cytokine production to an extent proportional to their ICOS expression levels. As the ICOS-enhancing potentials of IL-12 and IL-23 were maintained for several days after stimulation, both on Th1 and Th2 cells, we propose the concept that local regulation of ICOS expression on activated Th cells by IL-12 and/or IL-23 may provide a powerful means to amplify effector T cell responses in peripheral tissues, independently of the polarized state of the Th cells.  相似文献   

17.
CD43 is a highly glycosylated transmembrane protein that regulates T cell activation. CD43(-/-) T cells are hyperproliferative and the cytoplasmic tail of CD43 has been found to be sufficient to reconstitute wild-type proliferation levels, suggesting an intracellular mechanism. In this study, we report that upon TCR ligation CD43(-/-) T cells demonstrated no increase in tyrosine phosphorylation but a decreased calcium flux. Interestingly, CD43(-/-) T cells preferentially differentiated into Th2 cells in vitro, and CD43(-/-) T cells show increased GATA-3 translocation into the nucleus. In vivo, CD43(-/-) mice exhibited increased inflammation in two separate models of Th2-mediated allergic airway disease. In contrast, in Th1-mediated diabetes, nonobese diabetic CD43(-/-) mice did not significantly differ from wild-type mice in disease onset or progression. Th1-induced experimental autoimmune encephalomyelitis to MOG(35-55) was also normal in the CD43(-/-) mice. Nonetheless, the CD43(-/-) mice produced more IL-5 when restimulated with MOG(35-55) in vitro and demonstrated decreased delayed-type hypersensitivity responses. Together, these data demonstrate that although CD43(-/-) T cells preferentially differentiate into Th2 cells, this response is not sufficient to protect against Th1-mediated autoimmune responses.  相似文献   

18.
Recent studies have shown that neonatal mice are competent to develop mature, Ag-specific Th1 function in situ. However, under many conditions, Th2 responses dominate in the neonate, while Th1 responses are more prevalent in adults. To compare further the immune responses of neonates and adults, we used the enzyme-linked immunospot method to measure the frequencies of primary Th1/Th2 effectors generated in situ in the spleens and lymph nodes. As assessed by the detection of IFN-gamma- or IL-4-producing cells, adults developed mixed Th1/Th2 responses in both organs. Neonatal lymph nodes contained mature frequencies of IFN-gamma- and IL-4-producing cells. In striking contrast, while mature frequencies of Th2 cells developed in neonatal spleens, virtually no IFN-gamma-secreting cells were detected. Exclusive Th2 function was observed in both BALB/c and C57BL/6 neonates, strains in which the Th2 and Th1 lineages, respectively, are favored in adults. Although Th1 effectors were virtually undetectable, the addition of rIL-12 boosted the frequency of IFN-gamma-secreting cells to adult levels. Therefore, Th1 effectors apparently developed in situ, but Th1 effector function either was not promoted or was inhibited upon subsequent exposure to the Ag in culture. Together, these results indicate that the quality of a primary Th response in neonates is strongly dependent on the site of initial Ag exposure; responses initiated in the lymph nodes are mixed Th1/Th2, whereas responses occurring in the spleen are heavily Th2 biased.  相似文献   

19.
Immunization during the neonatal period often results in Th2-biased secondary responses. To understand the regulation of this phenomenon, we have examined all phases of Th development, from the generation of primary effectors to the duration of the primary effector stage to the production of memory effector function. First, we had previously reported that although primary responses in the neonatal lymph nodes are mature, mixed Th1/Th2-like, primary responses in the spleens of the same animals are exclusively Th2-like. To determine whether Th2-dominant secondary responses are due to the Th2-polarized primary function in the spleen, neonates were splenectomized before immunization. Even in the absence of primary neonatal splenic responses, the secondary responses of neonates were Th2 dominant. Thus, the overwhelmingly Th2 primary responses in the neonatal spleen are not required to generate Th2-dominant memory in the lymph nodes. Second, we have compared the kinetics of the primary response phase in neonates and adults. In adults, Ag-specific Th2 function disappeared rapidly from both the lymph nodes and spleen. In contrast, primary Th2 function persisted out to 5 wk in both neonatal organs. Third, the generation of Th memory responses was examined in animals initially immunized as neonates and in adults. These experiments demonstrated that neonates are selectively impaired in the development of Th1 memory effector function. Together, these results indicate that neonates are biased to Th2 function at all phases of an immune response.  相似文献   

20.
Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号