首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In many tissues, the presence of stem cells is inferred by the capacity of the tissue to maintain homeostasis and undergo repair after injury. Isolation of self-renewing cells with the ability to generate the full array of cells within a given tissue strongly supports this idea, but the identification and genetic manipulation of individual stem cells within their niche remain a challenge. Here we present novel methods for marking and genetically altering epithelial follicle stem cells (FSCs) within the Drosophila ovary. Using these new tools, we define a sequential multistep process that comprises transitioning of FSCs from quiescence to proliferation. We further demonstrate that integrins are cell-autonomously required within FSCs to provide directional signals that are necessary at each step of this process. These methods may be used to define precise roles for specific genes in the sequential events that occur during FSC division after a period of quiescence.  相似文献   

2.
3.
4.
Abnormal centrosomes in cold-treated Drosophila embryos   总被引:2,自引:0,他引:2  
In this study we examine the effect on the centrosomes of cold treatment of early Drosophila embryos. Prolonged cold treatment during the mitotic divisions which lead to the formation of the blastoderm causes arrest at metaphase of the nuclear divisions. When examined with immunofluorescence microscopy the mitotic spindles show marked pole splitting with the formation of supernumerary and irregularly sized centers, all able to nucleate microtubules. In embryos recovered for longer periods the additional organizing centers become ring-shaped and lose their nucleating properties. Cold treatment of embryos during the cellularization of the blastoderm results in marked fragmentation of the centrosomes, but nucleating capacity is preserved. Sometimes the centrioles come away from the pericentriolar material and their structure is seen to be modified.  相似文献   

5.
6.
Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobactertundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains.  相似文献   

7.
General anesthetics are known to inhibit the electrically induced escape response of the fruitfly through action within the brain. We examined this response and its sensitivity to anesthetics in several mutants that cause significant disruption of the mushroom body and other structures of the central brain in adult flies. Because we show here that anesthesia sensitivity is influenced by genetic background, we have used a set of congenic mutant lines. Sensitivity to halothane is normal in most of these lines, indicating that the anesthetic target is unaffected by the gross status of the central brain. Thus, for the escape response, anesthetic sensitivity is not a global feature but reflects action at a localized target. Only the mushroom body defect (mud) line showed an increased sensitivity of the escape response to halothane. Sensitivity to two other anesthetics is also perturbed in this line, albeit less dramatically so. The behavior of mud/+ heterozygotes and the comparison of brain anatomy among all the mutant lines imply that the effect of the mud mutation on anesthesia is not via gross alteration of central brain structures. The possibility that an adventitious mutation in the mud line is responsible for the effects on anesthesia is disfavored by the behavior of a heterozygote between two mud alleles. Although we do not yet know whether the mud gene encodes an anesthetic target or influences the functioning of an anesthetic-sensitive neuron in this pathway, our work indicates that this gene regulates the effects of halothane on a circumscribed pathway.  相似文献   

8.
9.
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.  相似文献   

10.
11.
12.
13.
B. Mir  S. Iyer  M. Ramaswami    K. S. Krishnan 《Genetics》1997,147(2):701-712
We describe a genetic and behavioral analysis of several alleles of har38, a mutant with altered sensitivity to the general anesthetic halothane. We obtained a P-element-induced allele of har38 and generated several excision alleles by remobilizing the P element. The mutants narrow abdomen (na) and har85 are confirmed to be allelic to har38. Besides a decreased sensitivity to halothane, all mutant alleles of this locus cause a characteristic walking behavior in the absence of anesthetics. We have quantified this behavior using a geotaxis apparatus. Responses of the mutant alleles to different inhalational anesthetics were tested. The results strongly favor a multipathway model for the onset of anesthesia. Mosaic flies were tested for their response to halothane and checked for their abnormal walking behavior. The analysis suggests that both the behaviors are exhibited only by such mosaics as have the entire head of mutant origin. It is likely that this focus represents an element of a common pathway in the anesthetic response to several inhalational anesthetics but not all. This result is the first demonstration of regional specificity in the CNS of any animal for general anesthetic action.  相似文献   

14.
15.
摘要:遗传操作系统,是研究基因和基因产物功能的一个极为重要的工具。超嗜热古菌遗传操作系统方面的研究落后于甲烷菌及嗜盐古菌中的研究,主要原因是选择标记的缺乏。然而,近十年来,在以硫化叶菌(Sulfolobus)为代表的超嗜热泉古菌和Thermococcus kodakaraensis为代表的超嗜热广古菌中,遗传操作系统研究取得了很大的进展。本文主要对这两种超嗜热古菌的遗传操作系统进展以及应用进行概述。  相似文献   

16.
热球菌目(Thermococcales)是一类分离自浅海热泉或者深海热液口的超嗜热微生物,包括火球菌(Pyrococcus)、热球菌(Thermococcus)、古老球菌(Palaeococcus)。研究其生命活动的分子机制,基因的功能等必须借助遗传操作系统。由于选择标记的限制,Thermococcales遗传操作系统落后于其他菌株。近年来,在Thermococcales发现了内源质粒并可以将其改造用作遗传工具。如在Thermococcus kodakarensis及Pyrococcus furious等菌株内都建立了成熟的遗传系统,并用于基因敲除以及基因表达。将就Thermococcales内源质粒的发现和遗传操作系统的发展与应用加以阐述。  相似文献   

17.
During the past ten years, significant progress has been made in understanding the basic mechanisms of the development of multicellular organisms. Genetic analysis of the development of Caenorhabditis elegans and Drosophila has unearthed a fruitful number of genes involved in establishing the basic body plan, patterning of limbs, specification of cell fate and regulation of programmed cell death. The genes involved in these developmental processes have been conserved throughout evolution and homologous genes are involved in the patterning of insect and human limbs. Despite these important discoveries, we have learned astonishingly little about one of the most obvious distinctions between animals: their difference in body size. The mass of the smallest mammal, the bumble-bee bat, is 2 g while that of the largest mammal, the blue whale, is 150 t or 150 million grams. Remarkably, even though they are in the same class, body size can vary up to 75-million-fold. Furthermore, this body growth can be finite in the case of most vertebrates or it can occur continuously throughout life, as for trees, molluscs and large crustaceans. Currently, we know comparatively little about the genetic control of body size. In this article we will review recent evidence from vertebrates and particularly from Drosophila that implicates insulin/insulin-like growth factor-I and other growth pathways in the control of cell, organ and body size.  相似文献   

18.
Genetic modifiers of tauopathy in Drosophila   总被引:6,自引:0,他引:6  
Shulman JM  Feany MB 《Genetics》2003,165(3):1233-1242
In Alzheimer's disease and related disorders, the microtubule-associated protein Tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles. Mutations in the tau gene cause familial frontotemporal dementia. To investigate the molecular mechanisms responsible for Tau-induced neurodegeneration, we conducted a genetic modifier screen in a Drosophila model of tauopathy. Kinases and phosphatases comprised the major class of modifiers recovered, and several candidate Tau kinases were similarly shown to enhance Tau toxicity in vivo. Despite some clinical and pathological similarities among neurodegenerative disorders, a direct comparison of modifiers between different Drosophila disease models revealed that the genetic pathways controlling Tau and polyglutamine toxicity are largely distinct. Our results demonstrate that kinases and phosphatases control Tau-induced neurodegeneration and have important implications for the development of therapies in Alzheimer's disease and related disorders.  相似文献   

19.
《Journal of Physiology》1996,90(5-6):383
Behavioral analyses of single-gene mutants have yielded genetic dissection of olfactory Pavlovian learning in fruit flies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号