首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An NADP-linked 15-hydroxyprostaglandin dehydrogenase specific for prostacyclin was purified 1,300-fold from rabbit kidney. Prostaglandins E2, F, and 6-Keto PGF and thromboxane B2 were oxidized by the purified enzyme with rates of reaction less than 4% that of PGI2. Unlike other rabbit kidney NADP-linked 15-hydroxyprostaglandin dehydrogenases, this enzyme catalyzes oxido reduction more rapidly at the 15- position than at the 9- position and does not utilise NAD as a cofactor. It has a molecular weight of 62,000 and migrates on polyacrylamide disc gel electrophoresis as a single diffuse band. The reaction product was identified by thin-layer chromatography as 6,15-diketo PGF. Prostacyclin dhydrogenase is the first 15-hydroxyprostaglandin dehydrogenase described which is specific for the metabolism of prostacyclin.  相似文献   

2.
F F Sun  B M Taylor 《Biochemistry》1978,17(19):4096-4101
Following a single intravenous administration of [11-3H]prostacyclin in rat, 77% of the administered dose was excreted within 3 days with 33% in urine and 44% in feces. Urinary metabolites were accumulated by chronic intravenous infusions of [11-3H]prostacyclin for 14 days. The drug was extensively metabolized and the structures of seven metabolites were elucidated by combined gas chromatography and mass spectrometry. The urinary products include the dinor and 19-hydroxy dinor derivatives of 6-keto-PGF1alpha and 13,14-dihydro-6,15-diketo-PGF1alpha, omega-hydroxy and omega-carboxyl dinor derivates of dihydro-6,15-diketo-PGF1alpha, and a dihydrodiketotetranordicarboxylic acid. The metabolic pathways of PGI2 in rat are similar to that of PGF2alpha.  相似文献   

3.
The activity of 15-hydroxyprostaglandin dehydrogenase has been shown to be high in both mesenteric arteries and veins; the present study suggests that it may be responsible for the inactivation of prostacyclin (PGI2). The cytoplasmic fractions of bovine mesenteric arteries and veins were incubated with radiolabeled PGI2 in the presence of NAD+ or NADP+. The substrate was rapidly converted to a product, which was isolated and identified as 6,15-diketo prostaglandin F1alpha, (6,15-diketo-PGF1alpha) by thin layer chromatography and gas chromatography-mass spectrometry. The initial reaction rate began to level off after less than 1 min of incubation at 37 degrees C. When radiolabeled 6-keto-PGF1alpha, the stable hydrolysis product of PGI2, was used as substrate under the same conditions, 97% was recovered unmetabolized after 2 min of incubation. Catabolism of PGI2 may be a major determinant of its levels in blood vessels and, therefore, may be of crucial importance to regulating the action of PGI2. Further, estimation of PGI2 generation by either tissues or organs may be misleading if only 6-keto-PGF1alpha is measured.  相似文献   

4.
P Hedqvist 《Prostaglandins》1979,17(2):249-258
In the Tyrode's perfused rabbit kidney PGI2 (1.3 x 10(-8)-3.3 x 10(-7)M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF1 alpha, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2, if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

5.
6.
The effect of inhibition of prostaglandin (PG) synthesis with indomethacin on basal and isoproterenol-stimulated renin secretion was examined in the isolated perfused rabbit kidney. 6-keto PGF1 alpha' the stable metabolite of prostacyclin, was measured in urine by radioimmunoassay using 125I labelled histamine coupled to 6-keto PGF1 alpha as ligand. The level in urine, prior to isolation and perfusion of the kidney, was 10.7 +/- 5.6 ng/min, and this was reduced to 0.32 +/- 0.25 ng/min (P less than 0.05) in rabbits treated with 2.0 mg/kg of indomethacin. Renin release was markedly stimulated by intrarenal infusion of isoproterenol (0.1 microgram/min) but urinary 6-keto PGF1 alpha did not change. These responses were not affected by indomethacin treatment. Renal perfusion pressure, perfusate flow rate and consequently renal vascular resistance, remained relatively constant during the course of perfusion and were unaltered by indomethacin treatment. These results therefore do not support a role for PGs, and in particular prostacyclin, in the renin response to beta-adrenergic stimulation with isoproterenol.  相似文献   

7.
The metabolism of prostacyclin (PGI2) in vivo was investigated in Cynomolgus monkey. Following intravenous infusion of 11-[3H]-PGI2 for three days, pooled urine was extracted with Amberlite XAD-2, then chromatographed and purified by Sephadex LH-20, and reverse phase column chromatography. Radioactive fractions were converted to appropriate derivatives for identification by gas chromatography mass spectrometry. Twelve metabolites were characterized, the major of which was 6-keto-PGF, accounting for 13% of the urinary radioactivity. The metabolic pathways are similar to those observed earlier in the rat. The excretion of substantial amounts of unchanged 6-keto-PGF indicated that the monkey was not able to metabolize PGI2 as avidly as the rat.  相似文献   

8.
9.
Metabolism of prostacyclin, [9-3H]PGI2, was examined in the isolated perfused rabbit lung and the post-microsomal supernate of rabbit lung homogenate. Two major metabolites of [9-3H]PGI2 from the lung perfusate were separated by thin-layer chromatography and radiometric gas-chromatography. These two products were identified as 6 keto-PGF and 6,15 diketo-13,14 dihydro PGF by mass-spectrometry; they represented 65% and 14% of the total radioactivity. When [9-3H]PGI2 was incubated with the lung homogenate in the presence of either NAD+ or NADP+, more than 36% and 25%, respectively, was converted to the 6,15 diketo-13,14 dihydro metabolite.  相似文献   

10.
Metabolism of arachidonic acid (AA) was studied in perfused lungs and kidneys of normal and atherosclerotic rabbits by determination of PGE2, PGF2 alpha and the stable metabolites of PGI2 (6-keto-PGF1 alpha) and TXA2 (TXB2). PGI2 was the main AA metabolite formed by normal lungs and kidneys. Atherosclerosis reduced the formation of PGI2 by about 50 % in both organs. TXA2 formation was similarily decreased in lungs. In kidneys, the decrease in PGI2 formation was accompanied by an increase in PGE2 formation.  相似文献   

11.
In the Tyrode's perfused rabbit kidney PGI2 (1.3 × 10−8-3.3 × 10−7M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2,if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

12.
13.
14.
1. The metabolism in rabbits of several perhydroanthracenes was investigated. All compounds were to different degrees excreted in the urine as glucuronides. 2. The aglycones of the glucuronides were found to be racemic secondary alcohols, having the hydroxyl group at a beta-methylene carbon. Where determinable, the hydroxyl group was shown to have an equatorial configuration. 3. These results suggested that hydroxylation was enzyme mediated, and, when compared with the results from studies on other alicyclic hydrocarbons, that the same enzyme system participated generally in the hydroxylation of such hydrocarbons. 4. A model for the enzyme active site is proposed to accord with the pattern of hydroxylation observed.  相似文献   

15.
16.
17.
The mechanism and sequence of side chain hydroxylation of cholesterol in bile acid synthesis was studied in the isolated perfused rabbit liver. A comparison was made between the importance of 26- and 25-hydroxylation in cholic acid biosynthesis in the rabbit. The formation of [G-3H]cholic acid was observed when the liver was perfused with 5beta-[G-3H]cholestane-3alpha, 7alpha-diol, 5beta-[G-3H]cholestane-3alpha, 7alpha-12alpha-triol, and 5beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol. No [G-3H]chenodeoxycholic acid was detected in the bile. These findings indicate that potential precursors of chenodeoxycholic acid were hydroxylated at position 12alpha either subsequent to or before hydroxylation of the cholesterol side chain. In addition, no other intermediates (tetrahydroxy or pentahydroxy bile alcohols) were found in the bile when these compounds were perfused in the liver. Bile acid precursors were detected in bile when the rabbit liver was perfused with 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol. The 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol was hydroxylated in the liver at the 12alpha position to yield the corresponding 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol. The tetrol was further metabolized to a series of pentols (5beta-cholestane-3alpha, 7alpha, 12alpha, 22, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 23, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 24, 25-pentol; and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25, 26-pentol). The major bile acid obtained from the perfusion of the 5beta-cholestane-3alpha, 7alpha, 25-triol was cholic acid. The experiments indicated that in the rabbit liver 12alpha-hydroxylation can occur after hydroxylation of the cholesterol side chain at either C-25 (5 beta-cholestane-3alpha, 7alpha, 25-triol) or C-26 (5beta-cholestane-3alpha, 7alpha-26-triol). Apparently, the rabbit can form cholic acid via the classical 26-hydroxylation pathway as well as via 25-hydroxylated intermediates.  相似文献   

18.
We investigated whether prostacyclin formation by the isolated rabbit lung can serve as a measure of pulmonary distress. The basal TXA2 and PGI2 formation was very low, and depended on the preperfusion history of the lung (low or high flow, use of dextran or artificial perfusate). The basal prostanoid production remained unchanged over a time period of 2 h. Neither was it influenced by the serotonin uptake inhibitor chlorimipramine and by small changes in temperature (33 degrees C vs 39 degrees C). The PGI2 formation was almost independent of hemodynamic alterations such as embolism or vasoconstriction. An enhanced production was only seen after a dramatic increase in flow (from 1.7-5 ml/sec), and a transient 3-fold increase was observed after administration of 1 mM H2O2. A substantial (up to 40-fold) but transient increase in TXA2 production was measured after 1 mM of H2O2, and the TXA2 production was positively correlated to the increase in pulmonary arterial pressure. However, thromboxane production was also dramatically augmented by hemodynamic alterations such as embolism, increased flow and--to a lesser extent--vasoconstriction. We conclude that the determination of the prostanoid production (and particularly the TXA2 formation) by the rabbit lung cannot be used as a direct measure of endothelial distress. To this end it is excessively biased by hemodynamic alterations such as recruitment and shear stress.  相似文献   

19.

Background

The rapid desensitization of the human prostacyclin (IP) in response to agonist binding has been shown in cell culture. Phosphorylation of the IP receptor by protein kinase C (PKC) has been suggested to be involved in this process.

Methods and results

In this study we investigated the vasodilatory effects of iloprost, a stable prostacyclin analogue, in perfused rabbit lungs. Continuous infusion of the thromboxane mimetic U46619 was employed to establish stable pulmonary hypertension. A complete loss of the vasodilatory response to iloprost was observed in experiments with continuous iloprost perfusion, maintaining the intravascular concentration of this prostanoid over a 180 min period. When lungs under chronic iloprost infusion were acutely challenged with inhaled iloprost, a corresponding complete loss of vasoreactivity was observed. This desensitization was not dependent on upregulation of cAMP-specific phosphodiesterases or changes in adenylate cyclase activity, as suggested by unaltered dose-response curves to agents directly affecting these enzymes. Application of a prostaglandin E1 receptor antagonist 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH 6809) or the PKC inhibitor bisindolylmaleimide I (BIM) enhanced the vasodilatory response to infused iloprost and partially prevented tachyphylaxis.

Conclusion

A three-hour infusion of iloprost in pulmonary hypertensive rabbit lungs results in complete loss of the lung vasodilatory response to this prostanoid. This rapid desensitization is apparently not linked to changes in adenylate cyclase and phosphodiesterase activation, but may involve PKC function and co-stimulation of the EP1 receptor in addition to the IP receptor by this prostacyclin analogue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号