首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Six men exercised on a cycle ergometer for 60 min on two occasions one week apart, at 68 +/- 3% of VO2max. On one occasion, a dilute glucose/electrolyte solution (E: osmolality 310 mosmol X kg-1, glucose content 200 mmol X l-1) was given orally at a rate of 100 ml every 10 min, beginning immediately prior to exercise. On the other occasion, a glucose polymer solution (P: osmolality 630 mosmol X kg-1, glucose content equivalent to 916 mmol X l-1) was given at the same rate. Blood samples were obtained from a superficial forearm vein immediately prior to exercise and at 15-min intervals during exercise; further samples were obtained at 15-min intervals for 60 min at rest following exercise. Heart rate and rectal temperature were measured at 5-min intervals during exercise. Blood glucose concentration was not different between the two tests during exercise, but rose to a peak of 8.7 +/- 1.2 mmol X l-1 (mean +/- SD) at 30-min post-exercise when P was drunk. Blood glucose remained unchanged during and after exercise when E was drunk. Plasma insulin levels were unchanged during exercise and were the same on both trials, but again a sharp rise in plasma insulin concentration was seen after exercise when P was drunk. The rate of carbohydrate oxidation during exercise, as calculated from VO2 and the respiratory exchange ratio, was not different between the two tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

3.
To determine if blood lactate (LA) is the stimulus responsible for 'breakaway' ventilation (VE), the lactate (LT) and ventilation (VT) thresholds were monitored during one-legged cycling exercise. Ten healthy volunteer male subjects (Mean 2-legged VO2max = 4.27 l X min-1) performed prior exercise (PE) to reduce muscle glycogen stores by cycling at 75-85% of maximal heart rate (HR max) for 60-75 min, followed by a 30 h low carbohydrate diet. Pre- and post- LT and VT tests were performed on a cycle ergometer employing a continuous protocol with increments of 16 W every 3 min. Muscle biopsies were taken from the vastus lateralis muscle before the PE ride, prior to the threshold test 24 h later, and before testing the non-exercised (NE) leg. An I.V. catheter placed in the antecubital vein was used for serial blood samples taken at rest, and during the final 30 s of each progressive load. Gas analysis was calculated every 30 s (Beckman Metabolic Measurement Cart). Biopsies (N = 3) showed that the exercise and diet regimen elicited glycogen reduction which significantly (p less than 0.05) reduced R and the blood LA concentration in both the PE (2.62 to 1.99 mmol X l-1) and NE (2.87 to 2.26 mmol X l-1) legs at LT. At VT, LA concentrations were also significantly reduced in the PE (3.35 to 2.56 mmol X l-1) and NE (3.59 to 2.74 mmol X l-1) legs. VO2 and VE, however, were similar between pre- and post- tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X min)-1, mean and SE) and 8 physically trained (VO2max 65 +/- 4 ml X (kg X min)-1) subjects. In response to hypoglycemia, levels of beta-endorphin and prolactin immunoreactivity in serum increased similarly in trained (from 41 +/- 2 pg X ml-1 and 6 +/- 1 pg X ml-1 before hypoglycemia to 103 +/- 11 pg X ml-1 and 43 +/- 9 pg X ml-1 during recovery, P less than 0.05) and untrained (from 35 +/- 7 pg X ml-1 and 7 +/- 2 pg X ml-1 to 113 +/- 18 pg X ml-1 and 31 +/- 8 pg X ml-1, P less than 0.05) subjects. Growth hormone (GH) was higher 90 min after glucose nadir in trained (61 +/- 13 mU X l-1) than in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds to hypoglycemia neither in trained nor in untrained subjects. Finally, differences in beta-endorphin responses to exercise between trained and untrained subjects cannot be ascribed to differences in responsiveness to hypoglycemia.  相似文献   

5.
Epinephrine responses to insulin-induced hypoglycemia have indicated that athletes have a higher adrenal medullary secretory capacity than untrained subjects. This view was tested by an exercise protocol aiming at identical stimulation of the adrenal medulla in the two groups. Eight athletes (T) and eight controls (C) ran 7 min at 60% maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. Plasma epinephrine both at rest and at identical relative work loads [110% VO2max: 8.73 +/- 1.51 (T) vs. 3.60 +/- 1.09 mmol X l-1 (C)] was higher [P less than 0.05) in T than in C. Norepinephrine, as well as heart rate, increased identically in the two groups, indicating identical sympathetic nervous activity. Lactate and glycerol were higher in T than in C after running. Glucose production peaked immediately after exercise and was higher in T than in C. Glucose disappearance increased less than glucose production and was identical in T and C. Accordingly plasma glucose increased, more in T than in C (P less than 0.01). In T glucose levels approached the renal threshold greater than 20 min postexercise. Glucose clearance increased less in T than in C during exercise and decreased postexercise to or below (T, P less than 0.05) basal levels, despite increased insulin levels. Long-term endurance training increases responsiveness of the adrenal medulla to exercise, indicating increased secretory capacity. During maximal exercise this may contribute to higher glucose production, lower clearance, more inaccurate glucoregulation, and higher lypolysis in T compared with C.  相似文献   

6.
Twelve male and female subjects (eight trained, four untrained) exercised for 30 min on a treadmill at an intensity of maximal O2 consumption (% VO2max) 90.0%, SD 4.7 greater than the anaerobic threshold of 4 mmol.l-1 (Than = 83.6% VO2max, SD 8.9). Time-dependent changes in blood lactate concentration [( lab]) during exercise occurred in two phases: the oxygen uptake (VO2) transient phase (from 0 to 4 min) and the VO2 steady-state phase (4-30 min). During the transient phase, [lab] increased markedly (1.30 mmol.l-1.min-1, SD (0.13). During the steady-state phase, [lab] increased slightly (0.02 mmol.l-1.min-1, SD 0.06) and when individual values were considered, it was seen that there were no time-dependent increases in [lab] in half of the subjects. Following hyperlacticaemia (8.8 mmol.l-1, SD 2.0) induced by a previous 2 min of supramaximal exercise (120% VO2max), [lab] decreased during the VO2 transient (-0.118 mmol.l-1.min-1, SD 0.209) and steady-state (-0.088 mmol.l-1.min-1, SD 0.103) phases of 30 min exercise (91.4% VO2max, SD 4.8). In conclusion, it was not possible from the Than to determine the maximal [lab] steady state for each subject. In addition, lactate accumulated during previous supramaximal exercise was eliminated during the VO2 transient phase of exercise performed at an intensity above the Than. This effect is probably largely explained by the reduction in oxygen deficit during the transient phase. Under these conditions, the time-course of changes in [lab] during the VO2 steady state was also affected.  相似文献   

7.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

9.
We examined the influence of various carbohydrates of fuel homeostasis and glycogen utilization during prolonged exercise. Seventy-five grams of glucose, fructose, or placebo were given orally to eight healthy males 45 min before ergometer exercise performed for 2 h at 55% of maximal aerobic power (VO2max). After glucose ingestion, the rises in plasma glucose (P less than 0.01) and insulin (P less than 0.001) were 2.4- and 5.8-fold greater than when fructose was consumed. After 30 min of exercise following glucose ingestion, the plasma glucose concentration had declined to a nadir of 3.9 +/- 0.3 mmol/l, and plasma insulin had returned to basal levels. The fall in plasma glucose was closely related to the preexercise glucose (r = 0.98, P less than 0.001) and insulin (r = 0.66, P less than 0.05) levels. The rate of endogenous glucose production and utilization rose similarly by 2.8-fold during exercise in fructose group and were 10-15% higher than in placebo group (P less than 0.05). Serum free fatty acid levels were 1.5- to 2-fold higher (P less than 0.01) after placebo than carbohydrate ingestion. Muscle glycogen concentration in the quadriceps femoris fell in all three groups by 60-65% (P less than 0.001) during exercise. These data indicate that fructose ingestion, though causing smaller perturbations in plasma glucose, insulin, and gastrointestinal polypeptide (GIP) levels than glucose ingestion, was no more effective than glucose or placebo in sparing glycogen during a long-term exercise.  相似文献   

10.
Nine subjects (VO2max 65 +/- 2 ml.kg-1.min-1, mean +/- SEM) were studied on two occasions following ingestion of 500 ml solution containing either sodium citrate (C, 0.300 g.kg-1 body mass) or a sodium chloride placebo (P, 0.045 g.kg-1 body mass). Exercise began 60 min later and consisted of cycle ergometer exercise performed continuously for 20 min each at power outputs corresponding to 33% and 66% VO2max, followed by exercise to exhaustion at 95% VO2max. Pre-exercise arterialized-venous [H+] was lower in C (36.2 +/- 0.5 nmol.l-1; pH 7.44) than P (39.4 +/- 0.4 nmol.l-1; pH 7.40); the plasma [H+] remained lower and [HCO3-] remained higher in C than P throughout exercise and recovery. Exercise time to exhaustion at 95% VO2max was similar in C (310 +/- 69 s) and P (313 +/- 74 s). Cardiorespiratory variables (ventilation, VO2, VCO2, heart rate) measured during exercise were similar in the two conditions. The plasma [citrate] was higher in C at rest (C, 195 +/- 19 mumol.l-1; P, 81 +/- 7 mumol.l-1) and throughout exercise and recovery. The plasma [lactate] and [free fatty acid] were not affected by citrate loading but the plasma [glycerol] was lower during exercise in C than P. In conclusion, sodium citrate ingestion had an alkalinizing effect in the plasma but did not improve endurance time during exercise at 95% VO2max. Furthermore, citrate loading may have prevented the stimulation of lipolysis normally observed with exercise and prevented the stimulation of glycolysis in muscle normally observed in bicarbonate-induced alkalosis.  相似文献   

11.
The present study examined whether a high caffeine dose improved running and cycling performance and altered substrate metabolism in well-trained runners. Seven trained competitive runners [maximal O2 uptake (VO2max) 72.6 +/- 1.5 ml.kg-1.min-1] completed four randomized and double-blind exercise trials at approximately 85% VO2max; two trials running to exhaustion and two trials cycling to exhaustion. Subjects ingested either placebo (PL, 9 mg/kg dextrose) or caffeine (CAF, 9 mg/kg) 1 h before exercise. Endurance times were increased (P less than 0.05) after CAF ingestion during running (PL 49.2 +/- 7.2 min, CAF 71.0 +/- 11.0 min) and cycling (PL 39.2 +/- 6.5 min, CAF 59.3 +/- 9.9 min). Plasma epinephrine concentration [EPI] was increased (P less than 0.05) with CAF before running (0.22 +/- 0.02 vs. 0.44 +/- 0.08 nM) and cycling (0.31 +/- 0.06 vs. 0.45 +/- 0.06 nM). CAF ingestion also increased [EPI] (P less than 0.05) during exercise; PL and CAF values at 15 min were 1.23 +/- 0.13 and 2.51 +/- 0.33 nM for running and 1.24 +/- 0.24 and 2.53 +/- 0.32 nM for cycling. Similar results were obtained at exhaustion. Plasma norepinephrine was unaffected by CAF at rest and during exercise. CAF ingestion also had no effect on respiratory exchange ratio or plasma free fatty acid data at rest or during exercise. Plasma glycerol was elevated (P less than 0.05) by CAF before exercise and at 15 min and exhaustion during running but only at exhaustion during cycling. Urinary [CAF] increased to 8.7 +/- 1.2 and 10.0 +/- 0.8 micrograms/ml after the running and cycling trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We measured substrate utilization during exercise performed with water (W), exogenous glucose (G), and exogenous fructose plus glucose (FG) ingestion in boys age 10-14 yr. Subjects (n = 12) cycled for 90 min at 55% maximal O(2) uptake while ingesting either W (25 ml/kg), 6% G (1.5 g/kg), or 3% F plus 3% G (1.5 g/kg). Fat oxidation increased during exercise in all trials but was higher in the W (0.28 +/- 0.023 g/min) than in the G (0.24 +/- 0.023 g/min) and FG (0.25 +/- 0.029 g/min) trials (P = 0.04). Conversely, total carbohydrate (CHO) oxidation decreased in all trials and was lower in the W (0.63 +/- 0.05 g/min) than in the G (0.78 +/- 0.051 g/min) and FG (0.74 +/- 0.056 g/min) trials (P = 0.009). Exogenous CHO oxidation, as determined by expired (13)CO(2), reached a maximum of 0.36 +/- 0.032 and 0.31 +/- 0.030 g/min at 90 min in G and FG, respectively (P = 0.04). Plasma insulin levels decrease during exercise in all trials but were twofold higher in G than in W and FG (P < 0.001). Plasma glucose levels decreased transiently after the onset of exercise in all trials and then returned to preexercise values in the W and FG (approximately 4.5 mmol/l) trials but were elevated by approximately 1.0 mmol/l in the G trial (P < 0.001). Plasma lactate concentrations decreased after the onset of exercise in all trials but were lower by approximately 0.5 mmol/l in W than in G and FG (P = 0.02). Thus, in boys exercising at a moderate intensity, the oxidation rate of G plus F is slightly less than G alone, but both spare endogenous CHO and fat to a similar extent. In addition, compared with flavored W, the ingestion of G alone and of G plus F delays exhaustion at 90% peak power by approximately 25 and 40%, respectively, after 90 min of moderate-intensity exercise.  相似文献   

13.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

14.
Effect of carbohydrate feedings during high-intensity exercise   总被引:3,自引:0,他引:3  
To determine the upper limits of steady-state exercise performance and carbohydrate oxidation late in exercise, seven trained men were studied on two occasions during prolonged cycling that alternated every 15 min between approximately 60% and approximately 85% of VO2max. When fed a sweet placebo throughout exercise, plasma glucose and respiratory exchange ratio (R) declined (P less than 0.05) from 5.0 +/- 0.1 mM and 0.91 +/- 0.01 after 30 min (i.e., at 85% VO2max) to 3.7 +/- 0.3 mM and 0.79 +/- 0.01 at fatigue (i.e., when the subjects were unable to continue exercise at 60% VO2max). Carbohydrate feeding throughout exercise (1 g/kg at 10 min, then 0.6 g/kg every 30 min) increased plasma glucose to approximately 6 mM and partially prevented this decline in carbohydrate oxidation, allowing the men to perform 19% more work (2.74 +/- 0.13 vs. 2.29 +/- 0.09 MJ, P less than 0.05) before fatiguing. Even when fed carbohydrate, however, by the 3rd h of exercise, R had fallen from 0.92 to 0.87, accompanied by a reduction in exercise intensity from approximately 85% to approximately 75% VO2max (both P less than 0.05). These data indicate that carbohydrate feedings enable trained cyclists to exercise at up to 75% VO2max and to oxidize carbohydrate at up to 2 g/min during the later stages of prolonged intense exercise.  相似文献   

15.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

16.
The improved glucose tolerance and increased insulin sensitivity associated with regular exercise appear to be the result, in large part, of the residual effects of the last bout of exercise. To determine the effects of exercise intensity on this response, glucose tolerance and the insulin response to a glucose load were determined in seven well-trained male subjects [maximal O2 uptake (VO2max) = 58 ml.kg-1.min-1] and in seven nontrained male subjects (VO2max = 49 ml.kg-1.min-1) in the morning after an overnight fast 1) 40 h after the last training session (control), 2) 14 h after 40 min of exercise on a cycle ergometer at 40% VO2max, and 3) 14 h after 40 min of exercise at 80% VO2max. Subjects replicated their diets for 3 days before each test and ate a standard meal the evening before the oral glucose tolerance test. No differences in the 3-h insulin or glucose response were observed between the control trial and before exercise at either 40 or 80% VO2max in the trained subjects. In the nontrained subjects the plasma insulin response was decreased by 40% after a single bout of exercise at either 40 or 80% VO2max (7.0 X 10(3) vs. 5.0 X 10(3), P less than 0.05; 3.8 X 10(3) microU.ml-1.180 min-1, P less than 0.01). The insulin response after a single bout of exercise in the nontrained subjects was comparable with the insulin responses found in the trained subjects for the control and exercise trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To compare the results obtained by incremental or constant work load exercises in the evaluation of endurance conditioning, a 20-week training programme was performed by 9 healthy human subjects on the bicycle ergometer for 1 h a day, 4 days a week, at 70-80% VO2max. Before and at the end of the training programme, (1) the blood lactate response to a progressive incremental exercise (18 W increments every 2nd min until exhaustion) was used to determine the aerobic and anaerobic thresholds (AeT and AnT respectively). On a different day, (2) blood lactate concentrations were measured during two sessions of constant work load exercises of 20 min duration corresponding to the relative intensities of AeT (1st session) and AnT (2nd session) levels obtained before training. A muscle biopsy was obtained from vastus lateralis at the end of these sessions to determine muscle lactate. AeT and AnT, when expressed as % VO2max, increased with training by 17% (p less than 0.01) and 9% (p less than 0.05) respectively. Constant workload exercise performed at AeT intensity was linked before training (60% VO2max) to a blood lactate steady state (4.8 +/- 1.4 mmol.l-1) whereas, after training, AeT intensity (73% VO2max) led to a blood lactate accumulation of up to 6.6 +/- 1.7 mmol.l-1 without significant modification of muscle lactate (7.6 +/- 3.1 and 8.2 +/- 2.8 mmol.kg-1 wet weight respectively). It is concluded that increase in AeT with training may reflect transient changes linked to lower early blood lactate accumulation during incremental exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In an effort to determine the effects of carbohydrate (CHO) feedings immediately before exercise in both the fasted and fed state, 10 well-trained male cyclists [maximum O2 consumption (VO2 max), 4.35 +/- 0.11 l/min)] performed 45 min of cycling at 77% VO2 max followed by a 15-min performance ride on an isokinetic cycle ergometer. After a 12-h fast, subjects ingested 45 g of liquid carbohydrate (LCHO), solid carbohydrate confectionery bar (SCHO), or placebo (P) 5 min before exercise. An additional trial was performed in which a high-CHO meal (200 g) taken 4 h before exercise was combined with a confectionery bar feeding (M + SCHO) immediately before the activity. At 10 min of exercise, serum glucose values were elevated by 18 and 24% during SCHO and LCHO, respectively, compared with P. At 0 and 45 min no significant differences were observed in muscle glycogen concentration or total use between the four trials. Total work produced during the final 15 min of exercise was significantly greater (P less than 0.05) during M + SCHO (194,735 +/- 9,448 N X m), compared with all other trials and significantly greater (P less than 0.05) during LCHO and SCHO (175,204 +/- 11,780 and 176,013 +/- 10,465 N X m, respectively) than trial P (159,143 +/- 11,407 N X m). These results suggest that, under conditions when CHO stores are less than optimal, exercise performance is enhanced with the ingestion of 45 g of CHO 5 min before 1 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Six trained males [mean maximal O2 uptake (VO2max) = 66 ml X kg-1 X min-1] performed 30 min of cycling (mean = 76.8% VO2max) during normoxia (21.35 +/- 0.16% O2) and hyperoxia (61.34 +/- 1.0% O2). Values for VO2, CO2 output (VCO2), minute ventilation (VE), respiratory exchange ratio (RER), venous lactate, glycerol, free fatty acids, glucose, and alanine were obtained before, during, and after the exercise bout to investigate the possibility that a substrate shift is responsible for the previously observed enhanced performance and decreased RER during exercise with hyperoxia. VO2, free fatty acids, glucose, and alanine values were not significantly different in hyperoxia compared with normoxia. VCO2, RER, VE, and glycerol and lactate levels were all lower during hyperoxia. These results are interpreted to support the possibility of a substrate shift during hyperoxia.  相似文献   

20.
The purpose of this study was to determine the optimal 1.63-km (1-mile) pacing strategy for 5-km running performance in moderately trained women distance runners. Eleven women distance runners (20.7 +/- 0.8 years, 163.8 +/- 2.0 cm, 57.0 +/- 2.2 kg, 51.7 +/- 1.0 ml.kg(-1).min(-1), 18.9 +/- 0.8% fat, 78.1 +/- 1.4% VO(2)max at lactate threshold) performed 2 preliminary 5-km time trials on a treadmill to establish baseline 5-km times. The average 1.63-km split pace of the fastest preliminary trial was manipulated for the first 1.63 km of the experimental trials and run either equal to (EVEN), 3% faster than (3%), or 6% faster than (6%) the current baseline average 1.63-km pace for each subject. Ventilation (V(E)), oxygen consumption VO(2)max )), respiratory exchange ratio, and heart rate were measured continuously. Overall 5-km times were not different (p > 0.05) for the EVEN, 3% and 6% trials finishing in 21:11 (minutes/seconds) +/- 29 seconds, 20:52 +/- 36 seconds and 20:39 +/- 29 seconds, respectively. The fastest time for 8 subjects resulted from the 6% trial and the other 3 subjects' fastest times resulted from the 3% trial. The overall exercise intensity (%VO(2)max , %VO(2)max above lactate threshold, V(E), and respiratory exchange ratio) of the first 1.63-km split was not different between the 3 and 6% trials, despite the 6% trial being 13 seconds faster than the 3% trial. Based on these findings, initial 1.63-km starting paces of a 5-km race can be 3 to 6% greater than current average race pace without negatively impacting performance. In order to optimize 5-km performance, runners should start the initial 1.63 km of a 5-km race at paces 3-6% greater than their current average race pace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号