首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of (13)C label from the TCA cycle. These results illustrate that (13)NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
The physiology and central metabolism of a ppc mutant Escherichia coli were investigated based on the metabolic flux distribution obtained by (13)C-labelling experiments using gas chromatography-mass spectrometry (GC-MS) and 2-dimensional nuclear magnetic resonance (2D NMR) strategies together with enzyme activity assays and intracellular metabolite concentration measurements. Compared to the wild type, its ppc mutant excreted little acetate and produced less carbon dioxide at the expense of a slower growth rate and a lower glucose uptake rate. Consequently, an improvement of the biomass yield on glucose was observed in the ppc mutant. Enzyme activity measurements revealed that isocitrate lyase activity increased by more than 3-fold in the ppc mutant. Some TCA cycle enzymes such as citrate synthase, aconitase and malate dehydrogenase were also upregulated, but enzymes of glycolysis and the pentose phosphate pathway were downregulated. The intracellular intermediates in the glycolysis and the pentose phosphate pathway, therefore, accumulated, while acetyl coenzyme A and oxaloacetate concentrations decreased in the ppc mutant. The intracellular metabolic flux analysis uncovered that deletion of ppc resulted in the appearance of the glyoxylate shunt, with 18.9% of the carbon flux being channeled via the glyoxylate shunt. However, the flux of the pentose phosphate pathway significantly decreased in the ppc mutant.  相似文献   

3.
Perchloric acid extracts of rabbit renal proximal convoluted tubular cells (PCT) incubated with [2-13C]glycerol and [1,3-13C]glycerol were investigated by 13C-NMR spectroscopy. These 13C-NMR spectra enabled us to determine cell metabolic pathways of glycerol in PCT cells. The main percentage of 13C-label, arising from 13C-enriched glycerol, was found in glucose, lactate, glutamine and glutamate. So far it can be concluded that glycerol is a suitable substrate for PCT cells and is involved in gluconeogenesis and glycolysis as well in the Krebs cycle intermediates. Label exchange and label enrichment in 13C-labelled glucose, arising from [2-13C]glycerol and [1,3-13C]glycerol, is explained by label scrambling through the pentose shunt and a label exchange in the triose phosphate pool. From relative enrichments it is estimated that the ratio of the pyruvate kinase flux to the gluconeogenetic flux is 0.97:1 and that the ratio of pyruvate carboxylase activity relative to pyruvate dehydrogenase activity is 2.0:1. Our results show that 13C-NMR spectroscopy, using 13C-labelled substrates, is a powerful tool for the examination of renal metabolism.  相似文献   

4.
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.  相似文献   

5.
The physiological state of CHO cells in perfusion culture was quantified by determining fluxes through the bioreaction network using 13C glucose and 2D-NMR spectroscopy. CHO cells were cultivated in a 2.5 L perfusion bioreactor with glucose and glutamine as the primary carbon and energy sources. The reactor was inoculated at a cell density of 8×106 cells/mL and operated at ~10×106 cells/mL using unlabeled glucose for the first 13 days. The second phase lasted 12 days and the medium consisted of 10% [U-13C]glucose, 40% labeled [1-13C]glucose with the balance unlabeled. After the culture attained isotopic steady state, biomass samples from the last 3 days of cultivation were considered representative and used for flux estimation. They were hydrolyzed and analyzed by 2D [13C, 1H] COSY measurements using the heteronuclear single quantum correlation sequence with gradients for artifacts suppression. Metabolic fluxes were determined using the 13C-Flux software package by minimizing the residuals between the experimental and the simulated NMR data. Normalized residuals exhibited a Gaussian distribution indicating good model fit to experimental data. The glucose consumption rate was 5-fold higher than that of glutamine with 41% of glucose channeled through the pentose phosphate pathway. The fluxes at the pyruvate branch point were almost equally distributed between lactate and the TCA cycle (55% and 45%, respectively). The anaplerotic conversion of pyruvate to oxaloacetate by pyruvate carboxylase accounted for 10% of the pyruvate flux with the remaining 90% entering the TCA cycle through acetyl-CoA. The conversion of malate to pyruvate catalyzed by the malic enzyme was 70% higher than that for the anaplerotic reaction catalyzed by pyruvate carboxylase. Most amino acid catabolic and biosynthetic fluxes were significantly lower than the glycolytic and TCA cycle fluxes. Metabolic flux data from NMR analysis validated a simplified model where metabolite balancing was used for flux estimation. In this reduced flux space, estimates from these two methods were in good agreement. This simplified model can routinely be used in bioprocess development experiments to estimate metabolic fluxes with much reduced analytical investment. The high resolution flux information from 2D-NMR spectroscopy coupled with the capability to validate a simplified metabolite balancing based model for routine use make 13C-isotopomer analysis an attractive bioprocess development tool for mammalian cell cultures.  相似文献   

6.
A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.  相似文献   

7.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

8.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

9.
Protein production of mammalian-cell culture is limited due to accumulation of waste products such as lactate, CO(2), and ammonia. In this study, the intracellular fluxes of hybridoma cells are measured to determine the amount by which various metabolic pathways contribute to the secretion of waste products derived from glucose. Continuously cultured hybridoma cells are grown in medium containing either 1-(13)C-, 2-(13)C-, or 6-(13)C-glucose. The uptake and production rates of amino acids, glucose, ammonia, O(2), and CO(2) as well as the cellular composition are measured. In addition, the (13)C distribution of the lactate produced and alanine produced by the hybridomas is determined by (1)H-NMR spectroscopy, and the (13)CO(2)/(12)CO(2) ratio is measured by on-line mass spectrometry. These data are used to calculate the intracellular fluxes of the glycolysis, the pentose phosphate pathway, the TCA cycle, and fluxes involved in amino acid metabolism. It is shown that: (i) approximately 20% of the glucose consumed is channeled through the pentose shunt; (ii) the glycolysis pathway contributes the most to lactate production, and most of the CO(2) is produced by the TCA cycle; (iii) the pyruvate-carboxylase flux is negligibly small; and (iv) the malic-enzyme flux is estimated to be 10% of the glucose uptake rate. Based on these flux data suggestions are made to engineer a more efficient glucose metabolism in mammalian cells.  相似文献   

10.
Information displayed by homonuclear and heteronuclear spin-coupling patterns in 13C- and 1H-MR spectra allowed us to identify the major lactate isotopomers produced either from [1-(13)C]-glucose or from [2-(13)C]-glucose by human erythrocytes. Relative concentrations of detectable isotopomers were determined by integrating the corresponding MR signals. The interpretation of these data in terms of the fractional glucose metabolised through glycolysis and pentose phosphate pathway was performed by a computer simulation of the metabolism that took into account metabolic schemes pertaining to glycolysis and to the F-type of pentose phosphate pathway. The simulation was organised in a way to anticipate the populations of the isotopomers produced from any precursor at a priori established metabolic steady state. By the simulation, isotopomer populations were determined according to different values of pentose cycle, defined as the flux of glyceraldehyde 3-phosphate originating from pentose phosphate pathway at unitary glucose uptake. The populations of the isotopomers originating from [2-(13)C]-glucose were described by polynomials, and ratios between the polynomials were used in conjunction with 13C- and 1H-MR data to determine pentose cycle values. The knowledge of glucose uptake and of pentose cycle value allowed us to perform accurate measurement of the pentose phosphate pathway flux, of the hexokinase and phosphofructokinase fluxes as well as, indirectly, of the carbon dioxide production.  相似文献   

11.
Pyruvate given in large doses may be neuroprotective in stroke, but it is not known to what degree the brain metabolizes pyruvate. Intravenous injection of [3-13C]pyruvate led to dose-dependent labelling of cerebral metabolites so that at 5 min after injection of 18 mmoles [3-13C]pyruvate/kg (2 g sodium pyruvate/kg), approximately 20% of brain glutamate and GABA were labelled, as could be detected by 13C nuclear magnetic resonance spectrometry ex vivo. Pyruvate, 9 mmoles/kg, was equivalent to glucose, 9 mmoles/kg, as a substrate for cerebral tricarboxylic acid (TCA) cycle activity. Inhibition of the glial TCA cycle with fluoroacetate did not affect formation of [4-13C]glutamate or [2-13C]GABA from [3-13C]pyruvate, but reduced formation of [4-13C]glutamine by 50%, indicating predominantly neuronal metabolism of exogenous pyruvate. Extensive formation of [3-13C]lactate from [2-13C]pyruvate demonstrated reversible carboxylation of pyruvate to malate and equilibration with fumarate, presumably in neurones, but anaplerotic formation of TCA cycle intermediates from exogenous pyruvate could not be detected. Too rapid injection of large amounts of pyruvate led to seizure activity, respiratory arrest and death. We conclude that exogenous pyruvate is an excellent energy substrate for neurones in vivo, but that care must be taken to avoid the seizure-inducing effect of pyruvate given in large doses.  相似文献   

12.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-13C]glucose and [1,2-13C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-13C]glucose and were sacrificed 30 min later. Brain extracts were analysed using 1H- and 13C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-13C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-13C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-13C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.  相似文献   

14.
Metabolic profiling is defined as the simultaneous assessment of substrate fluxes within and among the different pathways of metabolite synthesis and energy production under various physiological conditions. The use of stable-isotope tracers and the analysis of the distribution of labeled carbons in various intermediates, by both mass spectrometry and NMR spectroscopy, allow the role of several metabolic processes in cell growth and death to be defined. In the present paper we describe the metabolic profiling of Jurkat cells by isotopomer analysis using (13)C-NMR spectroscopy and [1,2-(13)C(2)]glucose as the stable-isotope tracer. The isotopomer analysis of the lactate, alanine, glutamate, proline, serine, glycine, malate and ribose-5-phosphate moiety of nucleotides has allowed original integrated information regarding the pentose phosphate pathway, TCA cycle, and amino acid metabolism in proliferating human leukemia T cells to be obtained. In particular, the contribution of the glucose-6-phosphate dehydrogenase and transketolase activities to phosphoribosyl-pyrophosphate synthesis was evaluated directly by the determination of isotopomers of the [1'-(13)C], [4',5'-(13)C(2)]ribosyl moiety of nucleotides. Furthermore, the relative contribution of the glycolysis and pentose cycle to lactate production was estimated via analysis of lactate isotopomers. Interestingly, pyruvate carboxylase and pyruvate dehydrogenase flux ratios measured by glutamate isotopomers and the production of isotopomers of several metabolites showed that the metabolic processes described could not take place simultaneously in the same macrocompartments (cells). Results revealed a heterogeneous metabolism in an asynchronous cell population that may be interpreted on the basis of different metabolic phenotypes of subpopulations in relation to different cell cycle phases.  相似文献   

15.
Metabolism of 13C labeled substrates viz. glucose and pyruvate in S. cerevisiae has been studied by 13C Nuclear Magnetic Resonance Spectroscopy. C3-Pyruvate, alanine and lactate, and C2-acetate are produced from [1-13C]glucose. The pyruvate, entering TCA cycle, leads to preferential labeling of C2-glutamate. [2-13C]Glucose results in labeling of C2-pyruvate, alanine and lactate. Some C3-pyruvate is also produced, indicating the routing of the label from glucose through pentose phosphate pathway (PPP). In TCA cycle the C2-pyruvate preferentially labels the C3-glutamate. The NMR spectra, obtained with [2-13C]pyruvate as substrate, confirm the above observations. These results suggest that the intermediates of TCA cycle are transferred from one enzyme active site to another in a manner that allows only restricted rotation of the intermediates. That is, the intermediates are partially channeled.  相似文献   

16.
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.  相似文献   

17.
Transport and metabolism of dicarboxylates may be important in the glial-neuronal metabolic interplay. Further, exogenous dicarboxylates have been suggested as cerebral energy substrates. After intrastriatal injection of [(14) C]fumarate or [(14) C]malate, glutamine attained a specific activity 4.1 and 2.6 times higher than that of glutamate, respectively, indicating predominantly glial uptake of these four-carbon dicarboxylates. In contrast, the three-carbon dicarboxylate [(14) C]malonate gave a specific activity in glutamate which was approximately five times higher than that of glutamine, indicating neuronal uptake of malonate. Therefore, neurones and glia take up different types of dicarboxylates, probably by different transport mechanisms. Labelling of alanine from [(14) C]fumarate and [(14) C]malate demonstrated extensive malate decarboxylation, presumably in glia. Intravenous injection of 75 micromol [U-(13) C]fumarate rapidly led to high concentrations of [U-(13) C]fumarate and [U-(13) C]malate in serum, but neither substrate labelled cerebral metabolites as determined by (13) C NMR spectroscopy. Only after conversion of [U-(13) C]fumarate into serum glucose was there (13) C-labelling of cerebral metabolites, and only at <10% of that obtained with 75 micromol [3-(13) C]lactate or [2-(13) C]acetate. These findings suggest a very low transport capacity for four-carbon dicarboxylates across the blood-brain barrier and rule out a role for exogenous fumarate as a cerebral energy substrate.  相似文献   

18.
Individual blastocysts from cows were cultured for 3 h under 5% CO2 in air, in 4 microliters droplets of Ham's F-10 medium containing D-[5-3H]glucose, D-[1-14C]-glucose, D-[6-14C]glucose, [2-14C]pyruvate, or L-[U-14C]glutamine, and with or without 2,4-dinitrophenol (DNP) or phenazine ethosulphate (PES). The 14CO2 or 3H2O produced were collected by exchange with an outer bath of 400 microliter 25 mM-NaHCO3. All combinations of substrate and treatment (control, DNP or PES) produced measurable quantities of labelled product except for D-[6-14C]glucose in the presence of PES. Untreated and DNP-treated embryos developed normally during a subsequent 48-h culture period in fresh medium, but PES-treated embryos degenerated. Pyruvate and glutamine metabolism both increased markedly in the presence of DNP, indicating that the Krebs' cycle is active, and that glutamine can be used as an energy substrate. Conversely, DNP has no significant effect on glucose metabolism, indicating that glycolysis is blocked in the bovine blastocyst due to a lack or inhibition of pyruvate kinase. The production of 14CO2 from D-[1-14C]glucose increased significantly in the presence of PES, indicating that the activity of the pentose shunt is less than maximal.  相似文献   

19.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   

20.
A novel method for metabolic flux studies of central metabolism which is based on respirometric (13)C flux analysis, i.e., parallel (13)C tracer studies with online CO(2) labeling measurements is applied to flux quantification of a lysine-producing mutant of Corynebacterium glutamicum. For this purpose, 3 respirometric (13)C labeling experiments with [1-(13)C(1)], [6-(13)C(1)] and [1,6-(13)C(2)] glucose were carried out in parallel. All fluxes comprising the reactions of glycolysis, of TCA cycle, of C3- and C4-metabolite interconversion and of lysine biosynthesis as well as the net reactions in the pentose phosphate pathway could be quantified solely using experimental data obtained from CO(2) labeling and extracellular rate measurements. At key branch points, 68+/-5% of glucose 6-phosphate were observed to be metabolized into pentose phosphate pathway and 48+/-1% of pyruvate into TCA cycle via pyruvate dehydrogenase. The results showed a good agreement with the previous studies using (13)C tracer cultivation and GC/MS analysis of proteinogenic amino acids. Also, respiratory quotient calculated from flux estimates using redox balance showed a high accordance with the value determined directly from the measured specific rates of O(2) consumption and CO(2) production. The results strongly support that the respirometric (13)C metabolic flux analysis is suited as an alternative to the conventional methods to study functional and regulatory activities of cells. The developed method is applicable to study growing or non-growing cells, primary and secondary metabolism and immobilized cells. Due to the non-accumulating nature of CO(2) labeling and instantaneous nature of the resulting fluxes, the method can also be used for dynamic profiling of metabolic activities. Therefore, it is complementary to conventional methods for metabolic flux analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号