首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of salt stress on proline (Pro) accumulation and its relationship with the changes occurring at the level of polyamine (PA) metabolism and tyramine were investigated in leaf discs of tomato (Lycopersicon esculentum). The rate of accumulation of Pro, PA and tyramine was higher in the salt-sensitive than in the salt-tolerant cultivar. In the salt-sensitive cultivar, Pro started to accumulate 4 h after the onset of the NaCl treatment, its maximum level being reached 27 h later. The lag phase was associated with a rapid decrease in putrescine (Put) and spermidine (Spd) and some increase in 1,3-diaminopropane (Dap), a product of Spd and/or spermine (Spm) oxidation. This was followed by an increase in agmatine (Agm), cadaverine (Cad), Spm and tyramine. α-DL-difluoromethylarginine (DFMA), an inhibitor of arginine decarboxylase (ADC, EC 4.1.1.19), induced a decrease in the Put level in both control and stressed discs, while α-DL-difluoromethylomithine (DFMO), an inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17), caused a decrease in Spd and Spm levels only in salinized discs. These data suggest that ADC is operating under both control and stress conditions, whereas ODC activity is promoted only in response to salt stress. DFMA also depressed the salt-induced Pro accumulation while DFMO did not inhibit this response. In salt-stressed leaf discs, the decrease in Spd level in response to methylglyoxal-bis-(guanylhydrazone) (MGBG) or cyclohexylammonium (CHA) treatment suggests that salt stress did not block SAM decarboxylase or Spd synthase activities. However, the increased level of Dap reflected a salt stress-promoted oxidation of PA. CHA and MGBG had no effect on Pro accumulation. Putrescine, Dap and especially tyramine supplied at low concentrations stimulated the Pro response which was, however, suppressed by application of Spm. Treatment with aminoguanidine, an inhibitor of diamine oxidases, also strongly inhibited Pro accumulation. These data suggest that salt-induced Pro accumulation in tomato leaf discs is closely related to changes in their PA metabolism, either via substrate-product relationships or regulatory effects at target(s) which remain to be characterized.  相似文献   

2.
In this study cashew (Anacardium occidentale) plants were exposed to a short- and long-term exposure to NaCl in order to establish the importance of the salt-induced proteolysis and the glutamine synthetase activity on the proline accumulation. The cashew leaf showed a prominent proline accumulation in response to salt stress. In contrast, the root tissue had no significant changes in proline content even after the drastic injury caused by salinity on the whole plant. The leaf proline accumulation was correlated to protease activity, accumulation of free amino acid and ammonia, and decrease of both total protein and chlorophyll contents. The leaf GS activity was increased by the salt stress whereas in the roots it was slightly lowered. Although the several amino acids in the soluble pool of leaf tissue have showed an intense increment in its concentrations in the salt-treated plants, proline was the unique to show a proportional increment from 50 to 100 mol m-3 NaCl exposure (16.37 to 34.35 mmol kg-1 DM, respectively). Although the leaf glutamate concentration increased in the leaves of the salt-stressed cashew plants, as compared to control, its relative contribution to the total amino acid decreased significantly in stressed leaves when compared to other amino acids. In addition, when the leaf discs were incubated with NaCl in the presence of exogenous precursors (Glu, Gln, Orn or Arg) involved in the proline synthesis pathways, the glutamate was unique in inducing a significant enhancement of the proline accumulation compared to those discs with precursor in the absence of NaCl. These results, together with the salt-induced increase in the GS activity, suggest an increase in the de novo synthesis of proline probably associated with the increase of the concentration of glutamate. Moreover, the prominent salt-induced proline accumulation in the leaves was associated with the higher salt-sensitivity in terms of proteolysis and salt-induced senescence as compared to the roots. In conclusion, the leaf-proline accumulation was due, at least in part, to the increase in the salt-induced proteolysis associated with the increments in the GS activity and hence the increase in the concentration of glutamate precursor in the soluble amino acid pool.  相似文献   

3.
甘氨酸甜菜碱增强青菜抗盐性的作用(英文)   总被引:6,自引:1,他引:5  
通过对青菜 (BrassicachinensisL .)叶面喷施甜菜碱 ,发现其易于为叶片所吸收并运至其他部位。一定浓度范围内的甜菜碱可明显增强青菜对盐胁迫的抗性。甜菜碱可显著降低盐胁迫下叶和根中Na 的累积 ,这种降低主要是根系对Na 、K 的选择性吸收能力增强所致。盐胁迫下甜菜碱导致根系质膜H ATPase活性提高了 45.1 % ,据此推测甜菜碱降低植株中Na 的累积很可能部分由于促进根系质膜的主动排Na 过程。另外 ,甜菜碱对抗盐性的增强还体现在对叶片质膜和叶绿素的稳定作用和对脯氨酸合成的促进。  相似文献   

4.
Brassica chinensis L. were foliarly applied with glycinebetaine (GB), as this species is unable to synthesis GB and sensitive to osmotic stress such as salt. The exogenous GB was easily absorbed and transported by the leaf of B. chinensis . Its application (0-20 mmol/L) enhanced the plant tolerance to salt stress. The treatment of 15 mmol/L GB significantly decreased the Na+ accumulation in leaf and root under NaCl stress. This difference in accumulating Na+ and K+ is caused by higher selectivity of root absorption. Furthermore, GB increased H+-ATPase activity of root plasma membrane evidently. This result strongly suggested that in root the decreased Na+ accumulation was caused by the GB accumulation that enhanced the extrusion of Na+ from the cell in some way through plasma membrane transporter, e.g. Na+/H+ antiport driven by H+-ATPase. The GB application was also found to stabilize the plasma membrane, to decrease the loss of chlorophyll, and to stimulate the osmosis induced proline response under salt stress.  相似文献   

5.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

6.
Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO3-?N, NH4-+N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO3? treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO3? treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO3-?N and NH4-+N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO3?. The ameliorating effect of Spd was the best, and that of Put the worst.  相似文献   

7.
Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7 d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1 mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1 mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.  相似文献   

8.
Effects of Osmoprotectants upon NaCl Stress in Rice   总被引:35,自引:1,他引:34       下载免费PDF全文
Plants accumulate a number of osmoprotective substances in response to NaCl stress, one of them being proline (Pro). While characterizing some of the changes in solute accumulation in NaCl-stressed rice (Oryza sativa L.), we identified several other potential osmoprotectants. One such substance, trehalose, begins to accumulate in small amounts in roots after 3 d. We performed a series of experiments to compare the effects of Pro and trehalose on ion accumulation to determine whether the two chemicals protect the same physiological processes. We found that Pro either has no effect or, in some cases, exasperates the effect of NaCl on growth inhibition, chlorophyll loss, and induction of a highly sensitive marker for plant stress, the osmotically regulated salT gene. By contrast, low to moderate concentrations of trehalose reduce Na+ accumulation, salT expression, and growth inhibition. Somewhat higher concentrations (10 mM) prevent NaCl-induced loss of chlorophyll in blades, preserve root integrity, and enhance growth. The results of this study indicate that during osmotic stress trehalose or carbohydrates might be more important for rice than Pro.  相似文献   

9.
以盆栽4年生的苹果砧木湖北海棠(Malus hupehensis)为试材,叶面喷施100 mmol·L-1的甜菜碱,研究外源甜菜碱对干旱胁迫下湖北海棠叶片超微弱发光(UWL)、丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢(H2O2)、脯氨酸(Pro)及甜菜碱(GB)含量的影响.结果表明,轻度干旱胁迫下,叶片UWL强度提高,但随着干旱胁迫程度的加重而下降,至严重干旱胁迫时UWL明显低于正常供水处理;H2O2、MDA含量随干旱胁迫加重而升高;SOD和POD活性随胁迫加重而升高,但至重度干旱时下降.与单独干旱处理相比,叶片喷施甜菜碱显著提高了轻度和中度干旱胁迫叶片的UWL(分别提高35.27%和43.95%)、SOD和POD活性,降低了H2O2和MDA含量;促进了Pro和GB的积累.表明甜菜碱及通过甜菜碱诱导的脯氨酸积累,能够提高干旱胁迫下叶片的抗氧化能力,减轻过氧化损伤,对叶片细胞起到保护作用.  相似文献   

10.
The effect of the glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), on glutamate levels in, and glutamate release from, rat striatal tissue was examined. Tissue levels of glutamate were unchanged 24 h after an intraventricular injection of MSO, but tissue glutamine levels were decreased 50%. Calcium-dependent, potassium-stimulated glutamate release was diminished in tissue prisms from animals pretreated with MSO compared to controls. The decreased release of glutamate correlated over time with the inhibition of GS following an intraventricular injection of MSO. The maximum diminution of calcium-dependent, potassium-stimulated glutamate release (50%) and the maximum inhibition of GS activity (51%) were observed 24 h after MSO. The addition of 0.5 mM glutamine to the perfusion medium completely reversed the effects of MSO pretreatment on calcium-dependent, potassium-stimulated glutamate release. Since GS is localized in glial cells and the measured glutamate release is presumed to occur from neurons, the data support the contention that astroglial glutamine synthesis is an important contributor to normal neuronal neurotransmitter release.  相似文献   

11.
Ammonia accumulation and photosynthetic rate inhibition took place when spinach leaf tissue was supplied with methionine sulfoximine (MSO), an inhibitor of glutamine synthetase. This effect was observed in the absence of significant inorganic nitrogen reduction or an exogenous source of ammonia. Both the time lag prior to the initial photosynthetic rate decrease and the rate of that decrease depend on the O2 and MSO concentrations supplied to the leaf tissue. However, the total rate of ammonia accumulation was similar at both 20% and 2.2% O2. The decline in photosynthetic rate was not caused by stomatal closure but may be a result of ammonia toxicity. The data point out the importance of glutamine synthetase in preventing the poisoning of leaf metabolism by ammonia generated internally through processes not involved in net nitrogen assimilation. The rapidity of the action of MSO in suppressing photosynthesis was unexpected and should not be overlooked in interpreting data from other experiments involving that inhibitor. MSO shows promise as a tool for investigating C-N flow, particularly during photorespiration.  相似文献   

12.
Kishor P  Hong Z  Miao GH  Hu C  Verma D 《Plant physiology》1995,108(4):1387-1394
Proline (Pro) accumulation has been correlated with tolerance to drought and salinity stresses in plants. Therefore, overproduction of Pro in plants may lead to increased tolerance against these abiotic stresses. To test this possibility, we overexpressed in tobacco the mothbean [delta]-pyrroline-5-carboxylate synthetase, a bifunctional enzyme able to catalyze the conversion of glutamate to [delta]-pyrroline-5-carboxylate, which is then reduced to Pro. The transgenic plants produced a high level of the enzyme and synthesized 10- to 18-fold more Pro than control plants. These results suggest that activity of the first enzyme of the pathway is the rate-limiting factor in Pro synthesis. Exogenous supply of nitrogen further enhanced Pro production. The osmotic potentials of leaf sap from transgenic plants were less decreased under water-stress conditions compared to those of control plants. Overproduction of Pro also enhanced root biomass and flower development in transgenic plants under drought-stress conditions. These data demonstrated that Pro acts as an osmoprotectant and that overproduction of Pro results in the increased tolerance to osmotic stress in plants.  相似文献   

13.
NaCl effects on proline metabolism in rice (Oryza sativa) seedlings   总被引:10,自引:0,他引:10  
Salt-stress effects on osmotic adjustment, ion and proline concentrations as well as proline metabolizing enzyme activities were studied in two rice ( Oryza sativa L.) cultivars differing in salinity resistance: I Kong Pao (IKP; salt-sensitive) and Nona Bokra (salt-resistant). The salt-sensitive cultivar exposed to 50 and 100 m M NaCl in nutritive solution for 3 and 10 days accumulated higher levels of sodium and proline than the salt-resistant cultivar and displayed lower levels of osmotic adjustment. Proline accumulation was not related to proteolysis and could not be explained by stress-induced modifications in Δ1-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2) or proline dehydrogenase (PDH; EC 1.5.1.2) activities recorded in vitro. The extracted ornithine Δ -aminotransferase (OAT; EC 2.6.1.13) activity was increased by salt stress in the salt-sensitive cultivar only. In both genotypes, salt stress induced an increase in the aminating activity of root glutamate dehydrogenase (GDH; EC 1.4.1.2) while deaminating activity was reduced in the leaves of the salt-sensitive cultivar. The total extracted glutamine synthetase activity (GS; EC 6.3.1.2) was reduced in response to salinity but NaCl had contrasting effects on GS1 and GS2 isoforms in salt-sensitive IKP. Salinity increased the activity of ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) extracted from leaves of both genotypes and increased the activity of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in the salt-sensitive cultivar. It is suggested that proline accumulation is a symptom of salt-stress injury in rice and that its accumulation in salt-sensitive plants results from an increase in OAT activity and an increase in the endogenous pool of its precursor glutamate. The physiological significance of the recorded changes are analyzed in relation to the functions of these enzymes in plant metabolism.  相似文献   

14.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

15.
With the aim to differentiate the ionic and osmotic components of salt stress, short and long-term changes in free polyamines and proline induced by iso-osmotic concentrations of NaCl (0.1 mol/L and 0.2 mol/L) and mannitol (0.2 mol/L and 0.4 mol/L) were determined in Fraxinus angustifolia callus. The peculiarities of the short-term responses were: i) a very early (30 min) and temporary increase in Putrescine (Pu) and Spermine (Spm) as a consequence of salt treatment, and ii) a continuous accumulation of Spermidine (Spd) and Spm in response to mannitol. The changes of Proline (Pro) were quite limited both in the short and in the long term, and generally occurred later than Polyamine (PAs) changes took place, suggesting a regulatory mechanism of PAs metabolism on Pro biosynthesis. In the long-term, no drastic accumulations of Pro or PAs in response to NaCl and mannitol were observed, suggesting that their physiological role is unlikely to be that of osmo-compatible solutes in this plant system. The salt induced a higher callus growth inhibition effect than did mannitol and this inhibition was associated with the reduction of endogenous levels of PAs, especially Pu. However, while a diverging time course was observed under lethal salt concentration (0.2 mol/L NaCl), a high parallelism in the endogenous changes of Pro and Pu was observed under all non-lethal conditions (control--0.2 and 0.4 mol/L mannitol--0.1 mol/L NaCl). Therefore the synchronous changes of Pro and Pu can be considered as a physiological trait associated with cell survival. These results indicate a strong metabolic co-ordination between PAs and Pro pathways and suggest that the metabolic fluxes through these pathways start competing only when the stress level is high enough to be lethal for cells.  相似文献   

16.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

17.
Derivatives of methionine sulfoximine (MSO) and phosphinothrycin (PPT), which are analogues of glutamate, exhibit selective herbicidal activity. This effect is accounted for by impairment of nitrogen metabolism, resulting from inhibition of its key enzyme in plants, glutamine synthetase (EC 6.3.1.2). Inhibition of the enzyme causes ammoniac nitrogen to accumulate and terminates the synthesis of glutamine. Changes in the content of these two metabolites (excess ammonium and glutamine deficiency) act in concert to cause plant death. However, low concentrations of MSO, PPT, and their metabolites produce an opposite effect: glutamine synthetase is activated, with concomitant stimulation of plant growth and productivity. The mechanisms whereby MSO and PPT affect glutamine synthetase activity are discussed in the context of nitrogen metabolism in plants.  相似文献   

18.
Abiotic stresses, such as high salinity or drought, can cause proline accumulation in plants. Such an accumulation involves proline transport into mitochondria where proline catabolism occurs. By using durum wheat seedlings as a plant model system, we investigated how proline enters isolated coupled mitochondria. The occurrence of two separate translocators for proline, namely a carrier solely for proline and a proline/glutamate antiporter, is shown in a functional study in which we found the following: (1) Mitochondria undergo passive swelling in isotonic proline solutions in a stereospecific manner. (2) Externally added l-proline (Pro) generates a mitochondrial membrane potential (ΔΨ) with a rate depending on the transport of Pro across the mitochondrial inner membrane. (3) The dependence of the rate of generation of ΔΨ on increasing Pro concentrations exhibits hyperbolic kinetics. Proline transport is inhibited in a competitive manner by the non-penetrant thiol reagent mersalyl, but it is insensitive to the penetrant thiol reagent N-ethylmaleimide (NEM). (4) No accumulation of proline occurs inside the mitochondria as a result of the addition of proline externally, whereas the content of glutamate increases both in mitochondria and in the extramitochondrial phase. (5) Glutamate efflux from mitochondria occurs at a rate which depends on the mitochondrial transport, and it is inhibited in a non-competitive manner by NEM. The dependence of the rate of glutamate efflux on increasing proline concentration shows saturation kinetics. The physiological role of carrier-mediated transport in the regulation of proline catabolism, as well as the possible occurrence of a proline/glutamate shuttle in durum wheat seedlings mitochondria, are discussed.Catello Di Martino, Roberto Pizzuto these authors contributed equally to the paper  相似文献   

19.
Derivatives of methionine sulfoximine (MSO) and phosphinothrycin (PPT), which are analogues of glutamate, exhibit selective herbicidal activity. This effect is accounted for by impairments of nitrogen metabolism, resulting from inhibition of its key enzyme in plants, glutamine synthetase (EC 6.3.1.2). Inhibition of the enzyme causes ammoniac nitrogen to accumulate and terminates the synthesis of glutamine. Changes in the content of these two metabolites (excess ammonium and glutamine deficiency) act in a concert to cause plant death. However, low concentrations of MSO, PPT, and their metabolites produce an opposite effect: glutamine synthetase is activated, with concomitant stimulation of plant growth and productivity. The mechanisms whereby MSO and PPT affect glutamine synthetase activity are discussed in the context of nitrogen metabolism in plants.  相似文献   

20.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号