首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of mTOR kinase after renal transplantation has been associated with podocyte injury and proteinuria; however, the signaling pathways regulating these effects are not well understood. We found that prolonged rapamycin treatment in podocytes leads to an increase in glycogen synthase kinase 3β (GSK3β) phosphorylation, resulting in inactivation of total GSK3β kinase activity. To investigate the cellular consequences of the inactivation of GSK3β, we used two inhibitors reducing kinase activity and studied the cross talk between GSK3 function and the Akt/mammalian target of rapamycin (mTOR) pathway. Both GSK3 inhibitors reduced the phosphorylation of the mTOR downstream target, p70(S6K), indicating that GSK3 inhibition in podocytes is able to cause similar effects as treatment with rapamycin. Moreover, GSK3 inhibition was accompanied by the reduced expression of slit diaphragm-associated proteins and resulted in an altered cytoskeletal structure and reduced motility of podocytes, suggesting that GSK3 kinase can modulate Akt/mTOR-dependent signaling in podocytes.  相似文献   

2.
Glycogen synthase kinase 3beta (GSK3 beta) is implicated in many biological events, including embryonic development, cell differentiation, apoptosis, and insulin response. GSK3 beta has now been shown to induce activation of the mitogen-activated protein kinase kinase kinase MEKK1 and thereby to promote signaling by the stress-activated protein kinase pathway. GSK3 beta-binding protein blocked the activation of MEKK1 by GSK3 beta in human embryonic kidney 293 (HEK293) cells. Furthermore, co-immunoprecipitation analysis revealed a physical association between endogenous GSK3 beta and MEKK1 in HEK293 cells. Overexpression of axin1, a GSK3 beta-regulated scaffolding protein, did not affect the physical interaction between GSK3 beta and MEKK1 in transfected HEK293 cells. Exposure of cells to insulin inhibited the activation of MEKK1 by GSK3 beta, and this inhibitory effect of insulin was abolished by the phosphatidylinositol 3-kinase inhibitor wortmannin. Furthermore, MEKK1 activity under either basal or UV- or tumor necrosis factor alpha-stimulated conditions was reduced in embryonic fibroblasts derived from GSK3 beta knockout mice compared with that in such cells from wild-type mice. Ectopic expression of GSK3 beta increased both basal and tumor necrosis factor alpha-stimulated activities of MEKK1 in GSK3 beta(-/-) cells. Together, these observations suggest that GSK3 beta functions as a natural activator of MEKK1.  相似文献   

3.
A heat resistant glycogen synthase kinase 3 (GSK 3) binding protein, p24, that inhibits its kinase activity at a low magnesium concentration (in a way similar to that of lithium) was found in microtubules from adult rat brains. This protein associates with GSK 3 in microtubules and corresponds to one previously described in the literature as p25, although it has a relative molecular weight of 23472. p24 is a poor substrate for GSK 3 but it could be phosphorylated by other protein kinases such as cAMP dependent protein kinase and cdk 5. Since p24 could form complexes with GSK 3, it may not only regulate GSK 3 activity but also it might act as an anchoring protein for the kinase.  相似文献   

4.
Glycogen synthase kinase 3 (GSK3), a key component of the insulin and wnt signaling pathways, is unusual, as it is constitutively active and is inhibited in response to upstream signals. Kinase activity is thought to be increased by intramolecular phosphorylation of a tyrosine in the activation loop (Y216 in GSK3beta), whose timing and mechanism is undefined. We show that GSK3beta autophosphorylates Y216 as a chaperone-dependent transitional intermediate possessing intramolecular tyrosine kinase activity and displaying different sensitivity to small-molecule inhibitors compared to mature GSK3beta. After autophosphorylation, mature GSK3beta is then an intermolecular serine/threonine kinase no longer requiring a chaperone. This shows that autoactivating kinases have adopted different molecular mechanisms for autophosphorylation; and for kinases such as GSK3, inhibitors that affect only the transitional intermediate would be missed in conventional drug screens.  相似文献   

5.
Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2   总被引:2,自引:0,他引:2  
Glycogen synthase kinase 3beta (GSK3beta) is a Ser/Thr kinase that is involved in numerous cellular activities. GSK3beta is activated by tyrosine phosphorylation. However, very little is known about the tyrosine kinases that are responsible for phosphorylating GSK3beta. In this report, we investigated the ability of the calcium-dependent tyrosine kinase, proline-rich tyrosine kinase 2 (PYK2) to tyrosine phosphorylate GSK3beta. In transfected CHO cells, it was demonstrated that PYK2 tyrosine phosphorylates GSK3beta in situ. The two kinases also coimmunoprecipitated. Furthermore, GSK3beta was tyrosine phosphorylated in vitro by an active, wild type PYK2, but not by the inactive, kinase dead form of PYK2. Therefore, this study is the first to demonstrate that GSK3beta is a substrate of PYK2 both in vitro and in situ.  相似文献   

6.
糖原合成激酶3β(GSK3β)作为一种多功能的丝氨酸/苏氨酸蛋白激酶,通过其多元化的活性调节方式,参与肿瘤形成的Wnt/β-catenin、NF-κB等多个信号传导通路,其生物学作用与肿瘤细胞的生长、增殖及凋亡过程密切相关;但是GSK3β在不同类型肿瘤中承担的角色是相反的,如在消化系统肿瘤中起到促癌作用,在乳腺癌、肺癌等肿瘤中表现为抑制作用。总结近年来GSK3β在恶性肿瘤中的作用及研究现状做一综述。  相似文献   

7.
It is important to identify the true substrates of protein kinases because this illuminates the primary function of any kinase. Here, we used bioinformatics and biochemical validation to identify novel brain substrates of the Ser/Thr kinase glycogen synthase kinase 3 (GSK3). Briefly, sequence databases were searched for proteins containing a conserved GSK3 phosphorylation consensus sequence ((S/T)PXX(S/T)P or (S/T)PXXX(S/T)P), as well as other criteria of interest (e.g. brain proteins). Importantly, candidates were highlighted if they had previously been reported to be phosphorylated at these sites by large-scale phosphoproteomic studies. These criteria identified the brain-enriched cytoskeleton-associated protein β-adducin as a likely substrate of GSK3. To confirm this experimentally, it was cloned and subjected to a combination of cell culture and in vitro kinase assays that demonstrated direct phosphorylation by GSK3 in vitro and in cells. Phosphosites were mapped to three separate regions near the C terminus and confirmed using phosphospecific antibodies. Prior priming phosphorylation by Cdk5 enhanced phosphorylation by GSK3. Expression of wild type, but not non-phosphorylatable (GSK3 insensitive), β-adducin increased axon and dendrite elongation in primary cortical neurons. Therefore, phosphorylation of β-adducin by GSK3 promotes efficient neurite outgrowth in neurons.  相似文献   

8.
Androgens play important roles in the growth of normal prostate and prostate cancer via binding to the androgen receptor (AR). In addition to androgens, AR activity can also be modulated by selective growth factors and/or kinases. Here we report a new kinase signaling pathway by showing that AR transactivation was repressed by wild type glycogen synthase kinase 3beta (GSK3 beta) or constitutively active S9A-GSK3 beta in a dose-dependent manner. In contrast, the catalytically inactive kinase mutant GSK3 beta showed little effect on the AR transactivation. The suppression of AR transactivation by GSK3 beta was abolished by the GSK3 beta inhibitor lithium chloride. The in vitro kinase assay showed that GSK3 beta prefers to phosphorylate the amino terminus of AR that may lead to the suppression of activation function 1 activity located in the NH(2)-terminal region of AR. GSK3 beta interrupted the interaction between the NH(2) and COOH termini of AR, and overexpression of the constitutively active form of GSK3 beta, S9A-GSK3 beta, reduced the androgen-induced prostate cancer cell growth in stably transfected CWR22R cells. Together, our data demonstrated that GSK3 beta may function as a repressor to suppress AR-mediated transactivation and cell growth, which may provide a new strategy to modulate the AR-mediated prostate cancer growth.  相似文献   

9.
Li B  Ryder J  Su Y  Zhou Y  Liu F  Ni B 《FEBS letters》2003,553(3):347-350
Recently, LiCl has been shown to inhibit amyloid beta peptide secretion in association with diminished glycogen synthase kinase beta (GSK3beta) activity. However, it remains unclear if direct inhibition of GSK3beta activity will result in decreased Abeta production. Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1) protein is a negative regulator of GSK3alpha/beta kinase activity. To examine whether direct inhibition of GSK3alpha/beta kinase activity can lower Abeta production, a FRAT1 peptide was expressed in swAPP(751) cells that produce high levels of Abeta. Our data demonstrate that cellular expression of FRAT1 peptide in swAPP(751) cells increases both GSK3alpha and beta phosphorylation on Ser21 and Ser9, respectively, while inhibiting kinase activity of both isoforms. Moreover, as a result of FRAT1 expression, the production of both total Abeta and Abeta(1-42) was significantly decreased. Thus, we provide evidence that direct regulation of GSK3alpha/beta by FRAT1 peptide significantly decreases Abeta production in swAPP(751) cells.  相似文献   

10.
11.
Cytidine triphosphate synthetase (CTPS) catalyzes the rate-limiting step in the de novo synthesis of CTP, and both the yeast and human enzymes have been reported to be regulated by protein kinase A or protein kinase C phosphorylation. Here, we provide evidence that stimulation or inhibition of protein kinase A and protein kinase C does not alter the phosphorylation of endogenous human CTPS1 in human embryonic kidney 293 cells under the conditions tested. Unexpectedly, we found that low serum conditions increased phosphorylation of endogenous CTPS1 and this phosphorylation was inhibited by the glycogen synthase kinase 3 (GSK3) inhibitor indirubin-3'-monoxime and GSK3beta short interfering RNAs, demonstrating the involvement of GSK3 in phosphorylation of endogenous human CTPS1. Separating tryptic peptides from [(32)P]orthophosphate-labeled cells and analyzing the phosphopeptides by mass spectrometry identified Ser-574 and Ser-575 as phosphorylated residues. Mutation of Ser-571 demonstrated that Ser-571 was the major site phosphorylated by GSK3 in intact human embryonic kidney 293 cells by GSK3 in vitro. Furthermore, mutation of Ser-575 prevented the phosphorylation of Ser-571, suggesting that phosphorylation of Ser-575 was necessary for priming the GSK3 phosphorylation of Ser-571. Low serum was found to decrease CTPS1 activity, and incubation with the GSK3 inhibitor indirubin-3'-monoxime protected against this decrease in activity. Incubation with an alkaline phosphatase increased CTPS1 activity in a time-dependent manner, demonstrating that phosphorylation inhibits CTPS1 activity. This is the first study to investigate the phosphorylation and regulation of human CTPS1 in human cells and suggests that GSK3 is a novel regulator of CTPS activity.  相似文献   

12.
13.
Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD). The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (-/-) neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.  相似文献   

14.
Shaw M  Cohen P 《FEBS letters》1999,461(1-2):120-124
Epidermal growth factor (EGF), insulin-like growth factor 1 (IGF1) and phorbol myristate acetate (PMA) induce the inhibition of glycogen synthase kinase 3 (GSK3) by stimulating the phosphorylation of an N-terminal serine. Here, we show that protein kinase B (PKB) plays a key role in mediating EGF-induced inhibition of GSK3alpha and that the classical MAP kinase (MAPK) cascade has two functions in this process. Firstly, it makes a transient contribution to EGF-induced inhibition of GSK3alpha. Secondly, it shortens the duration of PKB activation and GSK3alpha inhibition. In contrast, PKB alone mediates the IGF1-induced inhibition of GSK3alpha, while the MAPK cascade mediates the inhibition of GSK3alpha by PMA.  相似文献   

15.
16.
17.
Jia Luo 《生物学前沿》2012,7(3):212-220
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase.It is particularly abundant in the developing central nervous system (CNS).Since GSK3β has diverse substrates ranging fr...  相似文献   

18.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

19.
20.

Background

Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC.

Methods

The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture.

Results

Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/β at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes.

Conclusion

NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号