首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using nationwide long-term data on goshawk and grouse populations in Finland we study the spatial dynamics of the numbers of breeding northern goshawk ( Accipiter gentilis ) pairs, goshawk brood size and offspring sex ratio and their connection to the abundance of grouse. Our first large-scale data comprise of observations on goshawk nests during 1986–2001 pooled to 21 different regions. The second set are annual (1989–1998) observations of brood size and offspring sex ratio (females over the sum of females and males) in goshawk nests all over the country, aggregated to 50 km grid level (n=28 grid units). The third set comprises counts (1989–2001) of four species of woodland grouse, split to adults and juveniles, also given in the same 50 km grid units. Using these data, we show that the annual numbers of northern goshawk nests in the different regions fluctuate in synchrony. Synchrony is also found in long-term fluctuations of northern goshawk brood size and offspring sex ratio. Moreover, synchrony is found in annual numbers of grouse juveniles and adults, the main prey for the northern goshawk. In the brood size and offspring sex ratio of the goshawk, as well as in the annual numbers of grouse juveniles and adults the degree of synchrony falls off with increasing distance. However, only in sex ratios and in grouse dynamics are the slopes of synchrony vs distance roughly matching. We also found that sex ratio either vs grouse juveniles or grouse adults has a more matching spatial dimension (50 km radius) that sex ratio vs brood size. These observation lend support to the hypothesis that goshawk offspring sex ratio and grouse abundance are interconnected. Despite the reason, consequences of spatial coupling in sex ratio could have repercussions on other life history events.  相似文献   

2.
Computer simulations showed that reproductive synchrony in the greater investing sex can evolve as a strategy for increasing the investment of mates. The potential for synchrony to increase in frequency for this reason decreased with (a) increasing population size, (b) decreasing importance of synchrony-enforced investment, (c) increasing variance in quality among members of the lesser investing sex, and (d) decreasing male: female sex ratio. By reducing the payoffs to desertion, synchrony may result in the evolution of uniquely effective forms of parental care by the lesser investing sex, making desertion unprofitable regardless of the availability of potential mates. Thus relative levels of optimal parental investment are subject to change through the action of sexual selection itself.  相似文献   

3.
Growth defense tradeoff theory predicts that plants in low-resource habitats invest more energy in defense mechanisms against natural enemies than growth, whereas plants in high-resource habitats can afford higher leaf loss rates. A less-studied defense against herbivores involves the synchrony of leaf production, which can be an effective defense strategy if leaf biomass production exceeds the capacity of consumption by insects. The aim of this study was to determine whether leaf synchrony varied across habitats with different available resources and whether insects were able to track young leaf production among tree habitat specialists in a tropical forest of French Guiana. We predicted that high-resource habitats would exhibit more synchrony in leaf production due to the low cost and investment to replace leaf tissue. We also expected closer patterns of leaf synchrony and herbivory within related species, assuming that they shared herbivores. We simultaneously monitored leaf production and herbivory rates of five pairs of tree species, each composed of a specialist of terra firme or white-sand forests within the same lineage. Our prediction was not supported by the strong interaction of habitat and lineage for leaf synchrony within individuals of the same species; although habitat specialists differed in leaf synchrony within four of five lineages, the direction of the effect was variable. All species showed short time lags for the correlation between leaf production and herbivory, suggesting that insects are tightly tracking leaf production, especially for the most synchronous species. Leaf synchrony may provide an important escape defense against herbivores, and its expression appears to be constrained by both evolutionary history and environmental factors.  相似文献   

4.
The flowering, sex ratio, and spatial distribution of four dioecious species of Trichilia (Meliaceae) were studied in a semi-deciduous forest in southeastern Brazil. All reproductive trees (T. clausseni, T. pallida and T. catigua) with dbh > or = 5 cm within a 1-ha plot were collected, sexed, mapped and, for individuals of each species, the distances to the nearest neighbour of the same and opposite sex were measured. For the shrub species T. elegans (dbh < 5 cm), all reproductive individuals were sampled randomly in 10 samples of 10 x 10 m. The reproductive phenology was observed at weekly to monthly intervals from May 1988 to January 1990. The species are strictly dioecious, did not present any sex-mixed trees or sex switching during the study, and sex ratio did not differ significantly from 1 : 1. The size distributions and the relative size variation were not significantly different between sexes. There was no significant segregation or clumping between individuals of either sex and no fruit production without pollination. Onset of flowering and flowering peak were synchronous between male and female plants for all species studied. Flower synchrony was related to outcrossing and pollinator attraction rather than climatic factors.  相似文献   

5.
Interactions between pacemaker cells in a chain were calculated according to a "phase-reset" model. It is based on effects of action potentials in the cells on the cycle lengths of neighbouring cells. These effects were defined for each cell by a latency-phase curve (LPC), giving the latency time (L) until the onset of the next action potential in that cell, as a function of the phase (phi) at which a neighbour cell fired an action potential. Neighbour cells with simultaneous action potentials did not influence each others cycle length. We investigated how stable synchronization depends on the shape of the LPC's of the pacemaker cells and on chain length. Three types of interactive behaviour were distinguished. First, anti-phase synchrony, in which neighbouring cells fired with large phase differences with respect to the synchronized period Ps. Second, asynchrony, in which the periods of the cells did not become equal and constant. Third, in-phase synchrony, in which the phase differences between the neighbouring cells were zero or much smaller than the synchronized period Ps, depending on the differences between the intrinsic periods. Asynchrony and anti-phase synchrony may be seen as cardiophysiological arrhythmias, while in-phase synchrony represents the physiological type of synchrony in the heart. In-phase synchrony appeared to be strongly favoured by LPC's, which have a no-effect (refractory) part at early phases, a lengthened latency (or phase delay) part at intermediate phases and a shortened latency (or phase advance) part at late phases in the cycle. Such LPC-shapes are commonly found in preparations of cardiac pacemaker cells. When the pacemaker cells were identical, the synchronized period Ps during in-phase synchrony was equal to their intrinsic period P*i. For different intrinsic periods, Ps was equal to the intrinsic period of the fastest cell if the LPC's contained a sufficiently long initial no-effect period at early phases and a shortened latency part at late phases. When, on the other hand, such cell chains had a linear gradient in their intrinsic periods, "action potentials" started from the fast end and traveled along the chain. The propagation of an action potential wave slowed down as it reached the slower cells. When the gradient in the intrinsic periods was too steep, only the intrinsically fast end of the chain developed synchrony.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long‐standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application.  相似文献   

7.
Previous research has shown that the matching of rhythmic behaviour between individuals (synchrony) increases cooperation. Such synchrony is most noticeable in music, dance and collective rituals. As well as the matching of behaviour, such collective performances typically involve shared intentionality: performers actively collaborate to produce joint actions. Over three experiments we examined the importance of shared intentionality in promoting cooperation from group synchrony. Experiment 1 compared a condition in which group synchrony was produced through shared intentionality to conditions in which synchrony or asynchrony were created as a by-product of hearing the same or different rhythmic beats. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. To examinef the importance of synchrony when shared intentionality is present, Experiment 2 compared a condition in which participants deliberately worked together to produce synchrony with a condition in which participants deliberately worked together to produce asynchrony. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. Experiment 3 manipulated both the presence of synchrony and shared intentionality and found significantly greater cooperation with synchrony and shared intentionality combined. Path analysis supported a reinforcement of cooperation model according to which perceiving synchrony when there is a shared goal to produce synchrony provides immediate feedback for successful cooperation so reinforcing the group’s cooperative tendencies. The reinforcement of cooperation model helps to explain the evolutionary conservation of traditional music and dance performances, and furthermore suggests that the collectivist values of such cultures may be an essential part of the mechanisms by which synchrony galvanises cooperative behaviours.  相似文献   

8.
Abstract.  1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather.
2. Spatial synchrony of 10 Lepidoptera species and three weather variables (minimum temperature, maximum temperature, precipitation) from 12 sites was measured using cross-correlation functions relating levels of synchrony to the distance separating each set of populations. Based on both the pattern of synchrony and the region-wide cross-correlation coefficients, Lepidoptera species appear to be synchronised, at least in part, by local weather conditions.
3. Interspecific cross-correlations were calculated for all sympatric species pairs and trends in interspecific synchrony were related to phylogenetic relatedness, life-history timing, and weather. Interspecific synchrony was highest among species whose larvae were present during the same time of the season, but there was no relationship between interspecific synchrony and phylogenetic affinity.
4. Spatial synchrony of weather variables was significantly related to both species of some interspecific pairs, indicating weather as a potential mechanism involved in synchronising populations of different species.  相似文献   

9.
Networks of compartmental model neurons were used to investigate the biophysical basis of the synchronization observed between sparsely-connected neurons in neocortex. A model of a single column in layer 5 consisted of 100 model neurons: 80 pyramidal and 20 inhibitory. The pyramidal cells had conductances that caused intrinsic repetitive bursting at different frequencies when driven with the same input. When connected randomly with a connection density of 10%, a single model column displayed synchronous oscillatory action potentials in response to stationary, uncorrelated Poisson spike-train inputs. Synchrony required a high ratio of inhibitory to excitatory synaptic strength; the optimal ratio was 41, within the range observed in cortex. The synchrony was insensitive to variation in amplitudes of postsynaptic potentials and synaptic delay times, even when the mean synaptic delay times were varied over the range 1 to 7 ms. Synchrony was found to be sensitive to the strength of reciprocal inhibition between the inhibitory neurons in one column: Too weak or too strong reciprocal inhibition degraded intra-columnar synchrony. The only parameter that affected the oscillation frequency of the network was the strength of the external driving input which could shift the frequency between 35 to 60 Hz. The same results were obtained using a model column of 1000 neurons with a connection density of 5%, except that the oscillation became more regular.Synchronization between cortical columns was studied in a model consisting of two columns with 100 model neurons each. When connections were made with a density of 3% between the pyramidal cells of each column there was no inter-columnar synchrony and in some cases the columns oscillated 180° out of phase with each other. Only when connections from the pyramidal cells in each column to the inhibitory cells in the other column were added was synchrony between the columns observed. This synchrony was established within one or two cycles of the oscillation and there was on average less than 1 ms phase difference between the two columns. Unlike the intra-columnar synchronization, the inter-columnar synchronization was found to be sensitive to the synaptic delay: A mean delay of greater than 5 ms virtually abolished synchronization between columns.  相似文献   

10.
Abstract Complex sociality is widespread in lizards, but the difficulties of directly observing social interactions in free‐ranging snakes have precluded such studies for most snake species. However, a type of data already available from mark‐recapture studies (dates of capture and recapture of individually marked animals) can reveal social substructure within snake populations. If individuals associate with each other in social groups, we expect synchrony in the dates of capture and recapture of those animals. A field study of turtle‐headed sea snakes (Emydocephalus annulatus) in New Caledonia reveals exactly this phenomenon. For example, animals that were captured on the same day in one year often were recaptured on the same day the following year. Analysis rejects non‐social interpretations of these data (such as spatial‐temporal confounding in sampling, intrapopulation heterogeneity in cues for activity), suggesting instead that many individual sea snakes belong to ‘social’ groups that consistently move about together. The phenomenon of capture synchrony during mark‐recapture studies can provide new insights into the occurrence and correlates of cryptic social aggregations.  相似文献   

11.
We investigated the effects of activity, group size and sex composition on the cohesion of merino sheep (Ovis aries) groups. Mixed-sex (50% of each sex) and single-sex groups of 2, 4, 6 and 8 sheep were placed within 491-m2 arenas located in natural pastures and were video recorded during 6 daily hours. The behaviour, orientation and location of each sheep were then extracted from the films at 1-s intervals. We analysed the polarisation of individual orientations, mean inter-individual and nearest neighbours’ distances, as well as the frequency of pairs of nearest neighbours according to their sex within mixed-sex groups. Sheep were more aggregated than predicted under the null hypothesis of random spatial distribution for all group compositions and sizes. Sheep were more spread out and less aligned in half-active than in all-active groups, showing that social cohesion was reduced by a lack of activity synchronisation. The highest proximity between individuals was found in resting groups, yet alignment was low. The polarisation peaked in all-active groups. Mean inter-individual distance did not vary and the nearest neighbour distance decreased as group size increased. When sheep were all-active or all-resting, mixed-sex groups were more spread out than single-sex ones, with a greater distance between opposite than between same-sex individuals. Nearest neighbours of the same sex were also more frequent than random. Our results show that social cohesion can be modulated by activity synchrony but also by social affinity.  相似文献   

12.
13.
ABSTRACT. . The females of the tropical Bruchid Bruchidius atrolineatus (Pic) (Coleoptera) produce a sex pheromone that influences male behaviour. This pheromone, tested on males in an olfactometer, triggers characteristic antennal movements followed by a distinct chemo-anemotaxis. Sex pheromone production depends on the age of the females and is partly correlated with their ovarian activity. Females 0–24 h old are not attractive, but they begin to attract males on the second day of adult life. Vitellogenesis seems to correlate with the emission or the production of the pheromone but there is no precise synchrony between the two phenomena which are probably induced by the same endocrine factors. Within 1 h after mating there is a decrease in the females' attractiveness, which lasts at least 48 h. Under our experimental conditions no particular rhythm of production or emission of the sex pheromone in B. atrolineatus could be observed.  相似文献   

14.
The evolution of male-sterile individuals in hermaphroditic species represents the first step in the evolution of sex specialization. For male-sterile individuals to persist they must have some fitness advantage that compensates for their loss of the male function. Female fecundity also depends on environmental factors as those determining the likelihood of pollination and fertilization. Here we assessed the effects of both male sterility and reproductive synchrony (an environmentally affected trait) on the magnitude of female compensation of Erythroxylum havanense, a distylous shrub with morph-biased male sterility. In vitro measurements of pollen germination showed that thrums were more male sterile than pins. The compensatory advantage of thrums changed by a factor of five depending on flowering synchrony. Flowering in synchrony with the population increased fruit production in both morphs. However, because pins that flowered out of synchrony produced almost no fruits, the reproductive compensation of thrums was higher in these circumstances. Because the magnitude of compensation is frequently considered as a key factor in the evolution of sex specialization, the environmentally induced variation in the magnitude of the reproductive compensation of thrum plants may have profound effects on the evolutionary dynamics of the reproductive system of E. havanense.  相似文献   

15.
How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity.  相似文献   

16.
Following logic of the mate-availability hypothesis, females are expected to show asynchronous reproduction in those species where operational sex ratios are female-biased and under circumstances where an individual female is sexually receptive only for short durations. We show that females of the intertidal amphipod Corophium volutator are receptive to mating only for a few days following their moult and are unable to hasten onset of moulting in the presence of a male. Despite meeting the conditions of the mate-availability hypothesis, reproduction was synchronous for female C. volutator across spatial and temporal scales relevant to mate-searching abilities of males. As such, some females are not expected to mate between moults, which coincide with their ability to mate. However, females do moult frequently (relative to males) which should increase their likelihood of mating over their lifetimes. It is unlikely that seasonal constraints, predation, or competition can account for the high degree of synchrony among breeding female amphipods. We suggest that dispersal of females or their offspring may constrain activity of females, as they moulted almost entirely during spring tides (although not always during the same set of spring tides). Female reproductive synchrony also has implications for reproductive behaviour of males, in particular, the possibility of harem-defence polygyny.  相似文献   

17.
Jackson A  Gee VJ  Baker SN  Lemon RN 《Neuron》2003,38(1):115-125
Synchronous firing of motor cortex cells exhibiting postspike facilitation (PSF) or suppression (PSS) of hand muscle EMG was examined to investigate the relationship between synchrony and output connectivity. Recordings were made in macaque monkeys performing a precision grip task. Synchronization was assessed with cross-correlation histograms of the activity from 144 pairs of simultaneously recorded neurons, while spike-triggered averages of EMG defined the muscle field for each cell. Cell pairs with similar muscle fields showed greater synchronization than pairs with nonoverlapping fields. Furthermore, cells with opposing effects in the same muscles exhibited negative synchronization. We conclude that synchrony in motor cortex engages networks of neurons directly controlling the same muscle set, while inhibitory connections exist between neuronal populations with opposing output effects.  相似文献   

18.
Lilium longiflorum anthers have been used by a number of investigators as a source of supposedly synchronous cells for studying genetic, chromosomal and molecular events of meiotic prophase I. Because of questions raised by the literature as to the reliability of such synchrony, new baseline data were obtained for L. longiflorum ‘Croft’ in preparation for experiments requiring homogeneity or synchrony. Homogeneity was found to be reliable at the same level of locules of the same anther and of anthers from the same bud up to the onset of diplotene. Synchrony deteriorates rapidly from diplotene on. Less than half the anthers examined had PMC's at the same stage from apex to base. Hence experiments requiring complete homogeneity within anthers would call for rigorous monitoring of each anther included in the sample. Synchrony between buds of the same length was insufficient to allow bud length to be used as a reliable index of meiotic stage.  相似文献   

19.
Explaining synchronization of cyclical or fluctuating populations over geographical regions presents ecologists with novel analytical challenges. We have developed a method to measure synchrony within spatial-temporal datasets of population densities applicable to both periodic and irregularly fluctuating populations. The dynamics of each constituent population is represented by a discrete Markov model. The state of a population trajectory at each time-point is classified as one of 'increase', 'decrease', 'peak' or 'trough'. The set of populations at any time-point is characterized by the frequency distribution of these different states, and the time-evolution of this frequency distribution used to test the hypothesis that the dynamics of each population proceeds independently of the others. The analysis identifies years in which population coupling results in synchronous states and onto which states the system converges, and identifies those years in which synchrony remains high but is accounted for by coupling observed in previous years. It also enables identification of which pairs of sites show the highest levels of coupling. Applying these methods to populations of the grey-sided vole on Hokkaido reveals them to be fluctuating in greater synchrony than would be expected from independent dynamics, and that this level of synchrony is maintained through intermittent coupling acting in ca. 1 year in four or five. High synchrony occurs between sites with similar vegetation and of similar altitude indicating that coupling may be mediated through shared environmental stimuli. When coupling is indicated, convergence is equally likely to occur on a peak state as a trough, indicating that synchronization may be brought about by the response of populations to a combination of different stimuli rather than by the action of any single process.  相似文献   

20.
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson’s disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号