首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To determine the precise nonsteady-state characteristics of ventilation (VE), O2 uptake (VO2), and CO2 output (VCO2) during moderate-intensity exercise, six subjects each underwent eight repetitions of 100-W constant-load cycling. The tests were preceded either by rest or unloaded cycling ("0" W). An early component of VE, VO2, and VCO2 responses, which was obscured on any single test by the breath-to-breath fluctuations, became apparent when the several repetitions were averaged. These early responses were abrupt when the work was instituted from rest but were much slower and smaller from the 0-W base line and corresponded to the phase of cardiodynamic gas exchange. Some 20 s after the onset of the work a further monoexponential increase to steady state occurred in all three variables, the time constants of which did not differ between the two types of test. Consequently, the exponential behavior of VE, VO2, and VCO2 in response to moderate exercise is best described by a model that incorporates only the second phase of the response.  相似文献   

2.
Breath-by-breath O2 uptake (VO2) kinetics and increase of blood lactate concentration (delta Lab) were determined at the onset of square-wave stepping (S) or cycling (C) exercise on six male subjects during 1) transition from rest (R) to constant work load, 2) transition from lower to heavier work loads, wherein the baseline VO2 (VO2 s) was randomly chosen between 20 and 65% of the subjects' maximal O2 uptake (VO2 max), and 3) inverse transition from higher to lower work loads and/or to rest. VO2 differences between starting and arriving levels were 20-60% VO2 max. In C, the VO2 on-response became monotonically slower with increasing VO2 s, the half time (t1/2) increasing from approximately 22 s for VO2 s = R to approximately 63 s when VO2 s approximately equal to 50% VO2 max. In S, the fastest VO2 kinetics (t1/2 = 16 s) was attained from VO2 s = 15-30% VO2 max, the t1/2 being approximately 25 s when starting from R or from 50% VO2 max. The slower VO2 kinetics in C were associated with a much larger delta Lab. The VO2 kinetics in recovery were essentially the same in all cases and could be approximated by a double exponential with t1/2 of 21.3 +/- 6 and 93 +/- 45 s for the fast and slow components, respectively. It is concluded that the O2 deficit incurred is the sum of three terms: 1) O2 stores depletion, 2) O2 equivalent of early lactate production, and 3) O2 equivalent of phosphocreatine breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The variability in the estimation of the mean response time (MRT) of O2 uptake (VO2) kinetics from single ramp work rate exercise tests was examined in six repetitions by five fit subjects. Work rate increased at 50 W/min from a base line of 25 W to a work rate of 120% ventilatory threshold. Breath-by-breath data were analyzed by linear regression from 2 min after the onset of the ramp to the 120% work rate. Individual subjects showed approximately twofold differences in estimates of MRT; the coefficient of variation from individuals ranged from 18.5 to 29.3%. The MRT obtained as the mean from the individual repetitions did not differ from the MRT obtained from pooled within-subject data. Analysis of variance on the individual MRT estimates showed 53.9% of the variability was attributable to the slope of the regression, whereas only 2.4% could be attributed to baseline VO2. It was concluded that several repetitions of the ramp work rate tests should be pooled prior to estimation of kinetics parameters.  相似文献   

4.
Patients with chronic obstructive pulmonary disease (COPD) usually stop exercise before reaching physiological limits in terms of O(2) delivery and extraction. A plateau in lower limb O(2) uptake (VO(2)) and blood flow occurs despite progression of the imposed workload during cycling in some patients with COPD, suggesting that maximal capacity to transport O(2) had been reached and that it had been extracted in the peripheral exercising muscles. This study addresses this observation. Symptom-limited incremental cycle exercise was performed by 14 men [62 +/- 11 (SD) yr] with severe COPD (forced expiratory volume in 1 s = 35 +/- 7% of predicted value). Leg blood flow was measured at each exercise step with a thermodilution catheter inserted in the femoral vein. This value was multiplied by two to account for both working legs (Q(LEGS)). Arterial and femoral venous blood was sampled at each exercise step to measure blood gases. Leg O(2) consumption (VO(2LEGS)) was calculated according to the Fick equation. Total body VO(2) (VO(2TOT)) was measured from expired gas analysis, and tidal volume (VT) and minute ventilation (VE) were derived from the flow signal. In eight patients, VO(2LEGS) kept increasing in parallel with VO(2TOT) as external work rate was increasing. In six subjects, a plateau in VO(2LEGS) and Q(LEGS) occurred during exercise (increment of <3% between 2 consecutive increasing workloads) despite the increase in workload and VO(2TOT) [corresponding mean was 110 +/- 38 ml (11 +/- 4%)]. These six patients also exhibited a plateau in O(2) extraction during exercise. Peak exercise work rate was higher in the eight patients without a plateau than in the six with a plateau (51 +/- 10 vs. 40 +/- 13 W, P = 0.043). VT, VE, and dyspnea were significantly greater at submaximal exercise in patients of the plateau group compared with those of the nonplateau group. These results show that, in some patients with COPD, blood flow directed to peripheral muscles and O(2) extraction during exercise may be limited. We speculate that redistribution of cardiac output and O(2) from the lower limb exercising muscles to the ventilatory muscles is a possible mechanism.  相似文献   

5.
The increase in nuclear magnetic resonance transverse relaxation time (T(2)) of muscle water measured by magnetic resonance imaging after exercise has been correlated with work rate in human subjects. This study compared the T(2) increase in thigh muscles of trained (cycling VO(2 max) = 54.4 +/- 2.7 ml O(2). kg(-1). min(-1), mean +/- SE, n = 8, 4 female) vs. sedentary (31.7 +/- 0.9 ml O(2). kg(-1). min(-1), n = 8, 4 female) subjects after cycling exercise for 6 min at 50 and 90% of the subjects' individually determined VO(2 max). There was no significant difference between groups in the T(2) increase measured in quadriceps muscles within 3 min after the exercises, despite the fact that the absolute work rates were 60% higher in the trained group (253 +/- 15 vs. 159 +/- 21 W for the 90% exercise). In both groups, the increase in T(2) of vastus muscles was twofold greater after the 90% exercise than after the 50% exercise. The recovery of T(2) after the 90% exercise was significantly faster in vastus muscles of the trained compared with the sedentary group (mean recovery half-time 11.9 +/- 1.2 vs. 23.3 +/- 3.7 min). The results show that the increase in muscle T(2) varies with work rate relative to muscle maximum aerobic power, not with absolute work rate.  相似文献   

6.
The effect of prior heavy-intensity warm-up exercise on subsequent moderate-intensity phase 2 pulmonary O2 uptake kinetics (tauVO2) was examined in young adults exhibiting relatively fast (FK; tauVO2 < 30 s; n = 6) and slow (SK; tauVO2 > 30 s; n = 6) VO2 kinetics in moderate-intensity exercise without prior warm up. Subjects performed four repetitions of a moderate (Mod1)-heavy-moderate (Mod2) protocol on a cycle ergometer with work rates corresponding to 80% estimated lactate threshold (moderate intensity) and 50% difference between lactate threshold and peak VO2 (heavy intensity); each transition lasted 6 min, and each was preceded by 6 min of cycling at 20 W. VO2 and heart rate (HR) were measured breath-by-breath and beat-by-beat, respectively; concentration changes of muscle deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin were measured by near-infrared spectroscopy (Hamamatsu NIRO 300). tauVO2 was lower (P < 0.05) in Mod2 than in Mod1 in both FK (20 +/- 5 s vs. 26 +/- 5 s, respectively) and SK (30 +/- 8 s vs. 45 +/- 11 s, respectively); linear regression analysis showed a greater "speeding" of VO2 kinetics in subjects exhibiting a greater Mod1 tauVO2. HR, oxyhemoglobin, and total hemoglobin were elevated (P < 0.05) in Mod2 compared with Mod1. The delay before the increase in HHb was reduced (P <0.05) in Mod2, whereas the HHb mean response time was reduced (P <0.05) in FK (Mod2, 22 +/- 3 s; Mod1, 32 +/- 11 s) but not different in SK (Mod2, 36 +/- 13 s; Mod1, 34 +/- 15 s). We conclude that improved muscle perfusion in Mod2 may have contributed to the faster adaptation of VO2, especially in SK; however, a possible role for metabolic inertia in some subjects cannot be overlooked.  相似文献   

7.
Cardiovascular response to cycle exercise during and after pregnancy   总被引:1,自引:0,他引:1  
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Intersubject variability in the relation between cardiac output (Q) and O2 uptake (VO2) was examined during supine cycling up to the maximum level in 40 normal untrained men age 27 +/- 4 (SD) yr. In individual subjects, Q increased linearly against VO2 in the submaximum exercise range. The SD of Q on VO2 was so small (0.47 +/- 0.25 l/min) that Q could be given by a linear function of VO2 as Q = K(VO2 - VO2 r) + Qr, where K, VO2 r, and Qr are the slope of the regression line, the resting VO2, and resting Q, respectively. K varied widely among the subjects studied, ranging from 5.5 to 10.3 and was independent of both physical characteristics and Qr, which ranged from 3.7 to 8.3 l/min. However, K correlated significantly with changes in heart rate, stroke volume, mean arterial pressure, and systemic vascular conductance. From these results, we concluded that the intersubject variability in the Q-VO2 relation was caused independently by individual variations in resting hemodynamics and in cardiovascular response to exercise.  相似文献   

9.
A previous study (Grassi B, Gladden LB, Samaja M, Stary CM, and Hogan MC, J Appl Physiol 85: 1394-1403, 1998) showed that convective O(2) delivery to muscle did not limit O(2) uptake (VO(2)) on-kinetics during transitions from rest to contractions at approximately 60% of peak VO(2). The present study aimed to determine whether this finding is also true for transitions involving contractions of higher metabolic intensities. VO(2) on-kinetics were determined in isolated canine gastrocnemius muscles in situ (n = 5) during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions corresponding to the muscle peak VO(2). Two conditions were compared: 1) spontaneous adjustment of muscle blood flow (Q) (Control) and 2) pump-perfused Q, adjusted approximately 15-30 s before contractions at a constant level corresponding to the steady-state value during contractions in Control (Fast O(2) Delivery). In Fast O(2) Delivery, adenosine was infused intra-arterially. Q was measured continuously in the popliteal vein; arterial and popliteal venous O(2) contents were measured at rest and at 5- to 7-s intervals during the transition. Muscle VO(2) was determined as Q times the arteriovenous blood O(2) content difference. The time to reach 63% of the VO(2) difference between resting baseline and steady-state values during contractions was 24.9 +/- 1.6 (SE) s in Control and 18.5 +/- 1.8 s in Fast O(2) Delivery (P < 0.05). Faster VO(2) on-kinetics in Fast O(2) Delivery was associated with an approximately 30% reduction in the calculated O(2) deficit and with less muscle fatigue. During transitions involving contractions at peak VO(2), convective O(2) delivery to muscle, together with an inertia of oxidative metabolism, contributes in determining the VO(2) on-kinetics.  相似文献   

10.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz) on CO2 output (VCO2) and ventilation (VE) kinetics was examined during moderate- and heavy-intensity exercise. Seven men [24 +/- 1 (SE) yr] performed cycling exercise during control (Con) and Acz (10 mg/kg body wt iv) sessions. Each subject performed step transitions (6 min) in work rate from 0 to 100 W [below ventilatory threshold (VET)]. VE and gas exchange were measured breath by breath. The time constant (tau) was determined for exercise VET by using a three-component model (fit from the start of exercise). VCO2 kinetics were slower in Acz (VET, MRT = 75 +/- 10 s) than Con (VET, MRT = 54 +/- 7 s). During VET kinetics were faster in Acz (MRT = 85 +/- 17 s) than Con (MRT = 106 +/- 16 s). Carbonic anhydrase inhibition slowed VCO2 kinetics during both moderate- and heavy-intensity exercise, demonstrating impaired CO2 elimination in the nonsteady state of exercise. The slowed VE kinetics in Acz during exercise 相似文献   

11.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

12.
The aim of this study was to examine the effects of assuming constant reduced scattering coefficient (mu'(s)) on the muscle oxygenation response to incremental exercise and its recovery kinetics. Fifteen subjects (age: 24 +/- 5 yr) underwent incremental cycling exercise. Frequency domain near-infrared spectroscopy (NIRS) was used to estimate deoxyhemoglobin concentration {[deoxy(Hb+Mb)]} (where Mb is myoglobin), oxyhemoglobin concentration {[oxy(Hb+Mb)]}, total Hb concentration (Total[Hb+Mb]), and tissue O(2) saturation (Sti(O(2))), incorporating both continuous measurements of mu'(s) and assuming constant mu'(s). When measuring mu'(s), we observed significant changes in NIRS variables at peak work rate Delta[deoxy(Hb+Mb)] (15.0 +/- 7.8 microM), Delta[oxy(Hb+Mb)] (-4.8 +/- 5.8 microM), DeltaTotal[Hb+Mb] (10.9 +/- 8.4 microM), and DeltaSti(O(2))(-11.8 +/- 4.1%). Assuming constant mu'(s) resulted in greater (P < 0.01 vs. measured mu'(s)) changes in the NIRS variables at peak work rate, where Delta[deoxy(Hb+Mb)] = 24.5 +/- 15.6 microM, Delta[oxy(Hb+Mb)] = -9.7 +/- 8.2 microM, DeltaTotal[Hb+Mb] = 14.8 +/- 8.7 microM, and DeltaSti(O(2))= -18.7 +/- 8.4%. Regarding the recovery kinetics, the large 95% confidence intervals (CI) for the difference between those determine measuring mu'(s) and assuming constant mu'(s) suggested poor agreement between methods. For the mean response time (MRT), which describes the overall kinetics, the 95% confidence intervals were MRT - [deoxy(Hb+Mb)] = 26.7 s; MRT - [oxy(Hb+Mb)] = 11.8 s, and MRT - Sti(O(2))= 11.8 s. In conclusion, mu'(s) changed from light to peak exercise. Furthermore, assuming a constant mu'(s) led to an overestimation of the changes in NIRS variables during exercise and distortion of the recovery kinetics.  相似文献   

13.
We examined whether lactic acidemia-induced hyperemia at the onset of high-intensity leg exercise contributed to the speeding of pulmonary O(2) uptake (VO(2)) after prior heavy exercise of the same muscle group or a different muscle group (i.e., arm). Six healthy male subjects performed two protocols that consisted of two consecutive 6-min exercise bouts separated by a 6-min baseline at 0 W: 1) both bouts of heavy (work rate: 50% of lactate threshold to maximal VO(2)) leg cycling (L1-ex to L2-ex) and 2) heavy arm cranking followed by identical heavy leg cycling bout (A1-ex to A2-ex). Blood lactate concentrations before L1-ex, L2-ex, and A2-ex averaged 1.7 +/- 0.3, 5.6 +/- 0.9, and 6.7 +/- 1.4 meq/l, respectively. An "effective" time constant (tau) of VO(2) with the use of the monoexponential model in L2-ex (tau: 36.8 +/- 4.3 s) was significantly faster than that in L1-ex (tau: 52.3 +/- 8.2 s). Warm-up arm cranking did not facilitate the VO(2) kinetics for the following A2-ex [tau: 51.7 +/- 9.7 s]. The double-exponential model revealed no significant change of primary tau (phase II) VO(2) kinetics. Instead, the speeding seen in the effective tau during L2-ex was mainly due to a reduction of the VO(2) slow component. Near-infrared spectroscopy indicated that the degree of hyperemia in working leg muscles was significantly higher at the onset of L2-ex than A2-ex. In conclusion, facilitation of VO(2) kinetics during heavy exercise preceded by an intense warm-up exercise was caused principally by a reduction in the slow component, and it appears unlikely that this could be ascribed exclusively to systemic lactic acidosis.  相似文献   

14.
The purpose of this investigation was to compare oxygen uptake (VO2) and fatigue characteristics of isotonic tetanic contractions with those observed during isotonic twitches in dog gastrocnemius-plantaris muscle. Tetanic contractions (1/s, 200-ms trains of 50 impulses/s) elicited a peak VO2 of 9.01 +/- 0.42 mumol.g-1.min-1, which declined 29% in 30 min. The peak was significantly lower during 4/s twitches (6.23 +/- 0.36 mumol.g-1.min-1), but the rate of decline was similar. Peak blood flow (Q) was 37% higher and decreased more slowly during tetanic than twitch contractions. VO2/Q and VO2/venous PO2 were similar in both groups at peak VO2 and later declined or remained constant over time. Power was significantly greater with tetanic contractions with the relative decline between 3 and 30 min similar in both groups (32 and 37%). In conclusion, tetanic contractions result in significantly higher VO2 and power than do twitch contractions. This was derived primarily from increased Q because the arteriovenous O2 difference was similar. A significant determinant of the difference in Q between twitch and tetanic contractions is mechanical hindrance of Q. There is relatively more time for unhindered flow in the tetanic contractions. In electrically stimulated muscles, maximal VO2 is related to Q and reflects mainly Q through the muscle rather than the VO2 capacity of the muscle.  相似文献   

15.
The purpose of this study was to examine a new method for calculating the O(2) deficit that considered the O(2) uptake (VO(2)) kinetics during exercise as two separate phases in light of previous research in which it was shown that the traditional O(2) deficit calculation overestimated the recovery O(2) consumption (ROC). Eight subjects completed exercise transitions between unloaded cycling and 25% (heavy, H) or 50% (very heavy, VH) of the difference between the lactic acid threshold (LAT) and peak VO(2) for 8 min. The O(2) deficit, calculated in the traditional manner, was significantly greater than the measured ROC for both above-LAT exercises: 4.03 +/- 1.01 vs. 2.63 +/- 0.80 (SD) liters for VH and 2.36 +/- 0.91 vs. 1.74 +/- 0.63 liters for H for the O(2) deficit vs. ROC (P < 0.05). When the kinetics were viewed as two separate components with independent onsets, the calculated O(2) deficit (2.89 +/- 0.79 and 1.71 +/- 0.70 liters for VH and H, respectively) was not different from the measured ROC (P < 0.05). Subjects also performed the same work rate for only 3 min. These data, from bouts terminated before the slow component could contribute appreciably to the overall VO(2) response, show that the O(2) requirement during the transition is less than the final steady state for the work rate, as evidenced by symmetry between the O(2) deficit and ROC. This new method of calculating the O(2) deficit more closely reflects the expected O(2) deficit-ROC relationship (i.e., ROC >/= O(2) deficit). Therefore, estimation of the O(2) deficit during heavy exercise transitions should consider the slow component of VO(2) as an additional deficit component with delayed onset.  相似文献   

16.
Requirements for cellular homeostasis appear to be unchanged between childhood and maturity. We hypothesized, therefore, that the kinetics of O2 uptake (VO2) in the transition from rest to exercise would be the same in young children as in teenagers. To test this, VO2 and heart rate kinetics from rest to constant work rate (75% of the subject's anaerobic threshold) in 10 children (5 boys and 5 girls) aged 7-10 yr were compared with values found in 10 teenagers (5 boys and 5 girls) aged 15-18 yr. Gas exchange was measured breath to breath, and phases I and II of the transition and phase III (steady-state exercise) were evaluated from multiple transitions in each child. Phase I (the VO2 at 20 s of exercise expressed as percent rest-to-steady-state exercise VO2) was not significantly correlated with age or weight [mean value 42.5 +/- 8.9% (SD)] nor was the phase II time constant for VO2 [mean 27.3 +/- 4.7 (SD) s]. The older girls had significantly slower kinetics than the other children but were also found to be less fit. When the teenagers exercised at work rates well below 75% of their anaerobic threshold, phase I VO2 represented a higher proportion of the overall response, but the phase II kinetics were unchanged. The temporal coupling between the cellular production of mechanical work at the onset of exercise and the uptake of environmental O2 appears to be controlled throughout growth in children.  相似文献   

17.
O2 uptake (VO2) kinetics and electromyographic (EMG) activity from the vastus medialis, rectus femoris, biceps femoris, and medial gastrocnemius muscles were studied during constant-load concentric and eccentric cycling. Six healthy men performed transitions from baseline to high-intensity eccentric (HE) exercise and to high-intensity (HC), moderate-intensity (MC), and low-intensity (LC) concentric exercise. For HE and HC exercise, absolute work rate was equivalent. For HE and LC exercise, VO2 was equivalent. VO2 data were fit by a two- or three-component exponential model. Surface EMG was recorded during the last 12 s of each minute of exercise to obtain integrated EMG and mean power frequency. Only in the HC exercise did VO2 increase progressively with evidence of a slow component (phase 3), and only in HC exercise was there evidence of a coincident increase with time in integrated EMG of the vastus medialis and rectus femoris muscles (P < 0.05) with no change in mean power frequency. The phase 2 time constant was slower in HC [24.0 +/- 1.7 (SE) s] than in HE (14.7 +/- 2.8 s) and LC (16.7 +/- 2.2 s) exercise, while it was not different from MC exercise (20.6 +/- 2.1 s). These results show that the rate of increase in VO2 at the onset of exercise was not different between HE and LC exercise, where the metabolic demand was similar, but both had significantly faster kinetics for VO2 than HC exercise. The VO2 slow component might be related to increased muscle activation, which is a function of metabolic demand and not absolute work rate.  相似文献   

18.
We addressed two questions concerned with the metabolic cost and performance of respiratory muscles in healthy young subjects during exercise: 1) does exercise hyperpnea ever attain a "critical useful level"? and 2) is the work of breathing (WV) at maximum O2 uptake (VO2max) fatiguing to the respiratory muscles? During progressive exercise to maximum, we measured tidal expiratory flow-volume and transpulmonary pressure- (Ptp) volume loops. At rest, subjects mimicked their maximum and moderate exercise Ptp-volume loops, and we measured the O2 cost of the hyperpnea (VO2RM) and the length of time subjects could maintain reproduction of their maximum exercise loop. At maximum exercise, the O2 cost of ventilation (VE) averaged 10 +/- 0.7% of the VO2max. In subjects who used most of their maximum reserve for expiratory flow and for inspiratory muscle pressure development during maximum exercise, the VO2RM required 13-15% of VO2max. The O2 cost of increasing VE from one work rate to the next rose from 8% of the increase in total body VO2 (VO2T) during moderate exercise to 39 +/- 10% in the transition from heavy to maximum exercise; but in only one case of extreme hyperventilation, combined with a plateauing of the VO2T, did the increase in VO2RM equal the increase in VO2T. All subjects were able to voluntarily mimic maximum exercise WV for 3-10 times longer than the duration of the maximum exercise. We conclude that the O2 cost of exercise hyperpnea is a significant fraction of the total VO2max but is not sufficient to cause a critical level of "useful" hyperpnea to be achieved in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We hypothesized that the metabolic acidosis resulting from the performance of multiple-sprint exercise would enhance muscle perfusion and result in a speeding of pulmonary oxygen uptake (VO2)kinetics during subsequent perimaximal-intensity constant work rate exercise, if O2 availability represented a limitation to VO2 kinetics in the control (i.e., no prior exercise) condition. On two occasions, seven healthy subjects completed two bouts of exhaustive cycle exercise at a work rate corresponding to approximately 105% of the predetermined Vo2 peak, separated by 3 x 30-s maximal sprint cycling and 15-min recovery (MAX1 and MAX2). Blood lactate concentration (means +/- SD: MAX1: 1.3 +/- 0.4 mM vs. MAX2: 7.7 +/- 0.9 mM; P < 0.01) was significantly greater immediately before, and heart rate was significantly greater both before and during, perimaximal exercise when it was preceded by multiple-sprint exercise. Near-infrared spectroscopy also indicated that muscle blood volume and oxygenation were enhanced when perimaximal exercise was preceded by multiple-sprint exercise. However, the time constant describing the primary component (i.e., phase II) increase in VO2 was not significantly different between the two conditions (MAX1: 33.8 +/- 5.5 s vs. MAX2: 33.2 +/- 7.7 s). Rather, the asymptotic "gain" of the primary Vo2 response was significantly increased by the performance of prior sprint exercise (MAX1: 8.1 +/- 0.9 ml.min(-1).W(-1) vs. MAX2: 9.0 +/- 0.7 ml.min(-1).W(-1); P < 0.05), such that VO2 was projecting to a higher "steady-state" amplitude with the same time constant. These data suggest that priming exercise, which apparently increases muscle O2 availability, does not influence the time constant of the primary-component VO2 response but does increase the amplitude to which VO2 may rise following the onset of perimaximal-intensity cycle exercise.  相似文献   

20.
This study determined whether marked hyperthermia alone or in combination with dehydration reduces the initial rate of rise in O(2) consumption (VO(2) on-kinetics) and the maximal rate of O(2) uptake (VO(2 max)) during intense cycling exercise. Six endurance-trained male cyclists completed four maximal cycle ergometer exercise tests (402 +/- 4 W) when euhydrated or dehydrated (4% body wt) with normal (starting esophageal temperature, 37.5 +/- 0.2 degrees C; mean skin temperature, approximately 31 degrees C) or elevated (+1 and +6 degrees C, respectively) thermal strain. In the euhydrated and normal condition, subjects reached VO(2 max) (4.7 +/- 0.2 l/min) in 228 +/- 34 s, with a mean response time of 42 +/- 2 s, and fatigued after 353 +/- 39 s. Hyperthermia alone or in combination with dehydration reduced mean response time (17-23%), VO(2 max) (16%), and performance time (51-53%) (all P < 0.01) but did not alter the absolute response time (i.e., the time to reach 63% response in the control trial, 3.2 +/- 0.1 l/min, 42 s). Reduction in VO(2 max) was accompanied by proportional decline in O(2) pulse and significantly elevated maximal heart rate (195 vs. 190 beats/min for hyperthermia vs. normal). Preventing hyperthermia in dehydrated subjects restored VO(2 max) and performance time by 65 and 50%, respectively. These results demonstrate that impaired high-intensity exercise performance with marked skin and internal body hyperthermia alone or in combination with dehydration is not associated with a diminished rate of rise in VO(2) but decreased VO(2 max).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号