首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic DNA replication. Enzymes and proteins acting at the fork   总被引:7,自引:0,他引:7  
A complex network of interacting proteins and enzymes is required for DNA replication. Much of our present understanding is derived from studies of the bacterium Escherichia coli and its bacteriophages T4 and T7. These results served as a guideline for the search and the purification of analogous proteins in eukaryotes. model systems for replication, such as the simian virus 40 DNA, lead the way. Generally, DNA replication follows a multistep enzymatic pathway. Separation of the double-helical DNA is performed by DNA helicases. Synthesis of the two daughter strands is conducted by two different DNA polymerases: the leading strand is replicated continuously by DNA polymerase delta and the lagging strand discontinuously in small pieces by DNA polymerase alpha. The latter is complexed to DNA primase, an enzyme in charge of frequent RNA primer syntheses on the lagging strand. Both DNA polymerases require several auxiliary proteins. They appear to make the DNA polymerases processive and to coordinate their functional tasks at the replication fork. 3'----5'-exonuclease, mostly part of the DNA polymerase delta polypeptide, can perform proof-reading by excising incorrectly base-paired nucleotides. The short DNA pieces of the lagging strand, called Okazaki fragments, are processed to a long DNA chain by the combined action of RNase H and 5'----3'-exonuclease, removing the RNA primers, DNA polymerase alpha or beta, filling the gap, and DNA ligase, sealing DNA pieces by phosphodiester bond formation. Torsional stress during DNA replication is released by DNA topoisomerases. In contrast to prokaryotes, DNA replication in eukaryotes not only has to create two identical daughter strands but also must conserve higher-order structures like chromatin.  相似文献   

2.
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.  相似文献   

3.
A previous paper reported the purification (from mouse cell extracts) and some of the properties of a protein, alpha accessory factor (AAF), that specifically stimulates DNA polymerase alpha/primase (1). We describe here studies on the mechanism of action of AAF. In the presence of AAF and a large excess of single-stranded circular DNA template, a molecule of DNA polymerase alpha/primase interacts with a single template DNA molecule priming and synthesizing multiple short DNA fragments covering thousands of nucleotides without detaching from the template, and, by many-fold repetition of the process, accomplishes serial replication of the population of DNA molecules. In contrast, without AAF the reaction involves the whole population of DNA molecules in parallel and with a very large number of binding events between DNA polymerase alpha/primase and DNA [corrected] template. The profound [corrected] increase in affinity of DNA polymerase alpha/primase for the DNA template that characterizes the mechanism suggests a functional identification of AAF as a template affinity protein. The resulting greater efficiency accounts for the ability of AAF to stimulate both the primase and polymerase activities of DNA polymerase alpha/primase. AAF also increases the processivity of DNA polymerase alpha/primase from approximately 15 to approximately 115 nucleotides, a size similar to that of mammalian Okazaki fragments, and it appears to allow DNA polymerase alpha/primase to traverse double-stranded regions of a DNA template. These features of the mechanism of AAF suggest that it may have a role in assisting DNA polymerase alpha/primase in synthesis of the lagging strand of a replication fork.  相似文献   

4.
alpha-like and beta-like DNA polymerases have previously been isolated from a halophilic archaebacterium Halobacterium halobium. In this report, we show that the alpha-like DNA polymerase has an associated 3' to 5'-exonuclease activity which is specific for single-stranded DNA, sensitive to both aphidicolin and N-ethylmaleimide and dependent on high salt concentrations like the polymerase activity. As this DNA polymerase has been shown to contain a primase activity, it may be considered as the equivalent to both eukaryotic DNA polymerases alpha and delta. As shown by glycerol-gradient centrifugation and electrophoresis under denaturing conditions, the beta-like polymerase would appear to have a monomeric structure and comprise of a single 65-kDa polypeptide. This DNA polymerase has both 3' to 5'-exonuclease and 5' to 3'-exonuclease activities which, contrary to polymerase activity, are inhibited by high salt concentrations.  相似文献   

5.
The proteins of bacteriophage T7 DNA replication mediate coordinated leading and lagging strand synthesis on a minicircle template. A distinguishing feature of the coordinated synthesis is the presence of a replication loop containing double and single-stranded DNA with a combined average length of 2600 nucleotides. Lagging strands consist of multiple Okazaki fragments, with an average length of 3000 nucleotides, suggesting that the replication loop dictates the frequency of initiation of Okazaki fragments. The size of Okazaki fragments is not affected by varying the components (T7 DNA polymerase, gene 4 helicase-primase, gene 2.5 single-stranded DNA binding protein, and rNTPs) of the reaction over a relatively wide range. Changes in the size of Okazaki fragments occurs only when leading and lagging strand synthesis is no longer coordinated. The synthesis of each Okazaki fragment is initiated by the synthesis of an RNA primer by the gene 4 primase at specific recognition sites. In the absence of a primase recognition site on the minicircle template no lagging strand synthesis occurs. The size of the Okazaki fragments is not affected by the number of recognition sites on the template.  相似文献   

6.
Flap endonuclease-1 (FEN1) is proposed to participate in removal of the initiator RNA of mammalian Okazaki fragments by two pathways. In one pathway, RNase HI removes most of the RNA, leaving a single ribonucleotide adjacent to the DNA. FEN1 removes this ribonucleotide exonucleolytically. In the other pathway, FEN1 removes the entire primer endonucleolytically after displacement of the 5'-end region of the Okazaki fragment. Cleavage would occur beyond the RNA, a short distance into the DNA. The initiator RNA and an adjacent short region of DNA are synthesized by DNA polymerase alpha/primase. Because the fidelity of DNA polymerase alpha is lower than that of the DNA polymerases that complete DNA extension, mismatches occur relatively frequently near the 5'-ends of Okazaki fragments. We have examined the ability of FEN1 to repair such errors. Results show that mismatched bases up to 15 nucleotides from the 5'-end of an annealed DNA strand change the pattern of FEN1 cleavage. Instead of removing terminal nucleotides sequentially, FEN1 appears to cleave a portion of the mismatched strand endonucleolytically. We propose that a mismatch destabilizes the helical structure over a nearby area. This allows FEN1 to cleave more efficiently, facilitating removal of the mismatch. If mismatches were not introduced during synthesis of the Okazaki fragment, helical disruption would not occur, nor would unnecessary degradation of the 5'-end of the fragment.  相似文献   

7.
Replication forks formed during rolling-circle DNA synthesis supported by a tailed form II DNA substrate in the presence of the primosome, the single-stranded DNA binding protein, and the DNA polymerase III holoenzyme (Pol III HE) that had been reconstituted from the purified subunits, beta, tau, and the gamma.delta complex, at limiting (with respect to nucleotide incorporation) concentrations of the Pol III core (alpha, epsilon, and theta) produced aberrantly small Okazaki fragments, while the synthesis of the leading strand was unperturbed. These small Okazaki fragments were not arrayed in tandem along the lagging-strand DNA template, but were separated by large gaps. Similarly structured synthetic products were not manufactured by replication forks reconstituted with higher, saturating concentrations of the Pol III core. Replication forks producing these small fragments could respond, by modulating the size of the Okazaki fragments produced, to variations in the concentration of NTPs or the primase, conditions that affect the frequency of priming on the lagging strand, but not to variation in the concentration of dNTPs, conditions that affect the frequency of utilization of the primers. Significantly longer Okazaki fragments (greater than 7 kilobases) could be produced in the presence of a limiting amount of Pol III core at low concentrations of the primase. These observations indicated that the production of small Okazaki fragments was not a result of a debilitated lagging-strand Pol III core, but rather a function of the time available for nascent strand synthesis during the cycle of events that are required for the manufacture of an Okazaki fragment and that it was the association of primase with the replication fork that keyed this cycle.  相似文献   

8.
The primosome is a mobile multiprotein DNA replication-priming apparatus that requires seven Escherichia coli proteins (replication factor Y (protein n'), proteins n and n", and the products of the dnaB, dnaC, dnaT, and dnaG genes) for assembly at a specific site (termed a primosome assembly site) on single-stranded DNA binding protein-coated single-stranded DNA. Two of the protein components of the primosome have intrinsic DNA helicase activity. The DNA B protein acts in the 5'----3' direction, whereas factor Y acts in the 3'----5' direction. The primosome complex has DNA helicase activity when present at a replication fork in conjunction with the DNA polymerase III holoenzyme. In this report, evidence is presented that the multiprotein primosome per se can act as a DNA helicase in the absence of the DNA polymerase III holoenzyme. The primosome DNA helicase activity can be manifested in either direction along the DNA strand. The directionality of the primosome DNA helicase activity is modulated by the concentration and type of nucleoside triphosphate present in the reaction mixture. This DNA helicase activity requires all the preprimosomal proteins (the primosomal proteins minus the dnaG-encoded primase). Preprimosome complexes must assemble at a primosome assembly site in order to be loaded onto the single-stranded DNA and act subsequently as a DNA helicase. The 5'----3' primosome DNA helicase activity requires a 3' single-stranded tail on the fragment to be displaced, while the 3'----5' activity does not require a 5' single-stranded tail on the fragment to be displaced. Multienzyme preprimosomes moving in either direction are capable of associating with the primase to form complete primosomes that can synthesize RNA primers.  相似文献   

9.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

10.
By using an in vitro system for R1 plasmid replication dependent on a plasmid-encoded repA protein and host dnaA protein, 5' ends of the nascent leading strand were located at positions 1986-1992, some 380 base pair downstream of oriR. Analyses of early replication intermediates generated in vitro in the presence of dideoxy TTP also indicated that replication initiates about 400 base pair downstream of oriR and proceeds unidirectionally. When a 418-base single-stranded DNA from position 1778 to 2195, derived from the leading strand template, was cloned onto an M13 vector, the chimeric single-stranded phage could be replicated in vitro with only single-stranded DNA binding protein, primase (dnaG gene product), and DNA polymerase III holoenzyme. Furthermore, the priming occurred at a site identical to leading strand initiation. These results strongly suggest that the leading strand synthesis is primed by primase alone. The lagging strand synthesis is specifically terminated at position 1515 or 1516 within oriR, preventing further leftward fork movement. Based on these results, a scheme of R1 plasmid replication is presented.  相似文献   

11.
The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  相似文献   

12.
The interactions of azidothymidine triphosphate, the metabolically active form of the anti-AIDS drug azidothymidine (zidovudine), with the cellular DNA polymerases alpha, delta, and epsilon, as well as with the RNA primer-forming enzyme DNA primase were studied in vitro. DNA polymerase alpha was shown to incorporate azidothymidine monophosphate into a growing polynucleotide chain. This occurred 2000-fold slower than the incorporation of natural dTTP. Despite the ability of polymerase alpha to use azidothymidine triphosphate as an alternate substrate, this compound was only marginally inhibitory to the enzyme (Ki greater than 1 mM). Furthermore, the DNA primase activity associated with DNA polymerase alpha was barely inhibited by azidothymidine triphosphate (Ki greater than 1 mM). Inhibition was more pronounced for DNA polymerases delta and epsilon. The type of inhibition was competitive with respect to dTTP, with Ki values of 250 and 320 microM, respectively. No incorporation of azidothymidine monophosphate was detectable with these two DNA polymerases because their associated 3'- to 5'-exonuclease activities degraded primer molecules prior to any measurable elongation. Template-primer systems with a preformed 3'-azidothymidine-containing primer terminus inhibited the three replicative polymerases rather potently. DNA polymerase alpha was inhibited with a Ki of 150 nM and polymerases delta and epsilon with Ki values of 25 and 20 nM, respectively. The type of inhibition was competitive with respect to the unmodified substrate poly(dA).oligo(dT) for all DNA polymerases tested. Performed 3'-azidothymidine-containing primers hybridized to poly(dA) were rather resistant to degradation by the 3'- to 5'-exonuclease of DNA polymerases epsilon and more susceptible to the analogous activity that copurified with DNA polymerase delta. It is proposed that the repair of 3'-azidothymidine-containing primers might become rate-limiting for the process of DNA replication in cells that have been treated with azidothymidine triphosphate.  相似文献   

13.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

14.
We have established a novel procedure to purify calf thymus DNA polymerase delta from cytoplasmic extracts. The enzyme has typical properties of DNA polymerase delta including a 3' - greater than 5' exonuclease activity and efficiently replicates natural occurring genomes such as primed single-stranded M13 DNA and single-stranded porcine circovirus DNA, this last one thanks to an associated or contaminating primase activity. A processivity of at least a thousand bases was evident and this in the apparent absence of proliferating cell nuclear antigen. The enzyme was purified through a procedure that allows the simultaneous isolation of DNA polymerase delta, DNA polymerase alpha-primase and a DNA dependent ATPase. All these enzymes coeluted from a phosphocellulose column. After chromatography on hydroxylapatite DNA polymerase delta separated from the coeluting DNA polymerase alpha and DNA dependent ATPase. Separation of the latter two was achieved on heparin-Sepharose. DNA polymerase delta was further purified by heparin-Sepharose and fast protein liquid chromatography. Purified DNA polymerase delta was resistant to the DNA polymerase alpha inhibitors BuPdGTP and BuAdATP and did not react with DNA polymerase alpha monoclonal and polyclonal antibodies. Based on this isolation protocol we can start to test biochemically the hypothesis whether DNA polymerase delta and DNA polymerase alpha might act coordinately at the replication fork as leading and lagging strand replicases, respectively.  相似文献   

15.
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.  相似文献   

16.
Prokaryotic DNA replication mechanisms   总被引:8,自引:0,他引:8  
The three different prokaryotic replication systems that have been most extensively studied use the same basic components for moving a DNA replication fork, even though the individual proteins are different and lack extensive amino acid sequence homology. In the T4 bacteriophage system, the components of the DNA replication complex can be grouped into functional classes as follows: DNA polymerase (gene 43 protein), helix-destabilizing protein (gene 32 protein), polymerase accessory proteins (gene 44/62 and 45 proteins), and primosome proteins (gene 41 DNA helicase and gene 61 RNA primase). DNA synthesis in the in vitro system starts by covalent addition onto the 3'OH end at a random nick on a double-stranded DNA template and proceeds to generate a replication fork that moves at about the in vivo rate, and with approximately the in vivo base-pairing fidelity. DNA is synthesized at the fork in a continuous fashion on the leading strand and in a discontinuous fashion on the lagging strand (generating short Okazaki fragments with 5'-linked pppApCpXpYpZ pentaribonucleotide primers). Kinetic studies reveal that the DNA polymerase molecule on the lagging strand stays associated with the fork as it moves. Therefore the DNA template on the lagging strand must be folded so that the stop site for the synthesis of one Okazaki fragment is adjacent to the start site for the next such fragment, allowing the polymerase and other replication proteins on the lagging strand to recycle.  相似文献   

17.
Depending on the ionic environment the replicative complex of silkworm Bombyx mori, containing DNA polymerase alpha and primase, catalyzes on single-stranded DNA of phage M13 a NTP-dependent synthesis or elongation of preformed primers. In the presence of NTPs and dNTPs at conditions optimal for the NTP-dependent synthesis the replicative complex synthesizes on M13 DNA oligoribonucleotides of 9-11 residues, which serve as primers for polymerization of DNA. The length of RNA-primers synthesized by primase of the complex depends on concentration of dNTP but does not depend on activity of DNA polymerase alpha. During elongation of exogenic primers annealed to M13 DNA the complex is processive synthesizing DNA fragments of dozens residues without dissociation from the template. Double-stranded structures in DNA such as "hairpins" appear to be barriers for driving of the complex along the template and cause pauses in elongation. DNA-binding proteins the SSB of Escherichia coli or the p32 of phage T4 destabilize double-stranded regions in DNA and eliminate elongation pauses corresponding to these regions. The replicative complex is able to fill in single-stranded gaps in DNA completely and to perform slowly the synthesis with displacement of one of parent strands in duplexes via repeated cycles of binding to the primer-template, limited elongation and dissociation.  相似文献   

18.
A form of DNA polymerase alpha was purified several thousandfold from a protein extract of Xenopus laevis eggs. The enzyme effectively converts, in the presence of ribonucleoside triphosphates, a circular single-stranded phage fd DNA template into a double-stranded DNA form and, therefore, must be associated with a DNA primase. We first show by gel electrophoresis in the presence of sodium dodecyl sulfate that both enzymatic activities, DNA polymerase and primase, most probably reside on a greater than 100 000-Da subunit of the DNA polymerase holoenzyme. We then assayed the polymerase-primase at various template/enzyme ratios and found that the DNA complementary strand sections synthesized in vitro belong to defined size classes in the range of 600-2000 nucleotides, suggesting preferred start and/or stop sites on the fd DNA template strand. We show that the stop sites coincide with stable hairpin structures in fd DNA. We have used a fd DNA template, primed by a restriction fragment of known size, to show that the polymerase-primase stops at the first stable hairpin structure upstream from the 3'-OH primer site when the reaction was carried out at 0.1 mM ATP. However, at 2 mM ATP the enzyme was able to travers this and other stop sites on the fd DNA template strand leading to the synthesis of 2-4 times longer DNA strands. Our results suggest a role for ATP in the polymerase-primase-catalyzed chain-elongation reaction.  相似文献   

19.
A role for RNA synthesis in homologous pairing events.   总被引:2,自引:0,他引:2  
  相似文献   

20.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号