首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions.  相似文献   

2.
The mitogen-activated protein kinase p38 is activated by mechanical force, but the cellular elements that mediate force-induced p38 phosphorylation are not defined. As alpha-smooth muscle actin (SMA) is an actin isoform associated with force generation in fibroblasts, we asked if SMA participates in the activation of p38 by force. Tensile forces (0.65 pn/mum(2)) generated by magnetic fields were applied to collagen-coated magnetite beads bound to Rat-2 cells. Immunoblotting showed that p38alpha was the predominant p38 isoform. Analysis of bead-associated proteins demonstrated that SMA enrichment of collagen receptor complexes required the alpha2beta1 integrin. SMA was present almost entirely as filaments. Swinholide depolymerized SMA filaments and blocked force-induced p38 phosphorylation and force-induced increases of SMA. Knockdown of SMA (70% reduction) using RNA interference did not affect beta-actin but inhibited force-induced p38 phosphorylation by 50%. Inhibition of Rho kinase blocked SMA filament assembly, force-induced increases of SMA, and force-induced p38 activation. Force application increased SMA content and enhanced the association of phosphorylated p38 with SMA filaments. Blockade of p38 phosphorylation by SB203586 abrogated force-induced increases of SMA. In cells transfected with SMA promoter-beta-galactosidase fusion constructs, co-transfection with constitutively active p38 or MKK6 increased SMA promoter activity by 2.5-3-fold. Dominant negative p38 blocked force-induced activation of the SMA promoter. In SMA negative cells, there was no force-induced p38 phosphorylation. We conclude that force-induced p38 phosphorylation is dependent on an SMA filament-dependent pathway that uses a feed-forward amplification loop to synergize force-induced SMA expression with p38 activation.  相似文献   

3.
Limulus sperm contains a dynamic macromolecular structure that rapidly extends a 50 microm process called the true discharge. The core of this structure is a bundle of ordered filaments composed of a complex of actin, scruin and calmodulin. We determined its structure by electron crystallographic reconstruction. The three-dimensional map reveals an actin-scruin helix that is azimuthally modulated by the influence of the interactions of a filament with its neighbors. There are a variety of density connections with neighboring filaments involving scruin. Scruin commonly contacts one neighbor, but we observe up to three interfilament connections involving both domains of the 28 scruin molecules in the unit cell. Our structure indicates that promiscuous scruin-scruin contacts are the major determinants of bundle stability in the true discharge. It also suggests that rearrangements would be permitted, which can facilitate the transition from the coiled to the true discharge form.  相似文献   

4.
Summary In dynamic light scattering, measurements of the intensity-intensity time correlation function from a suspension of rod-like particles of length L could reveal dynamical information related to translational and internal motions of those particles. For a suspension of thick filaments isolated from the myosin-regulated, striated muscles of Limulus at KL>1 (where K is the scattering vector), the average characteristic linewidth ( ) increased with the addition of Ca2+ or with the depletion of ATP. The increase in the with the addition of Ca2+ could be due to the presence of energy-requiring, high-frequency motions of the crossbridges activated by Ca2+. The increase in which occurred with the depletion of ATP was assumed to be mainly due to the thermal motions of the crossbridges after they had moved radially away from the filament backbone. The percentage increase in following the addition of Ca2+ was found to be seasonal, i.e., values of obtained from thick filaments isolated between the middle of June and the middle of September were smaller than those obtained during the rest of the year. The effect of temperature on the percentage increase in was also different. The increase showed a maximum at about 35°C during the summer and at about 25°C at other times. However, the percentage increase in developed under ATP-depleted conditions showed no temperature-related maximum. The number of bound Ca2+ per myosin molecule was 1 during the summer and 2 at other times.Abbreviations DLS dynamic light scattering - L length - K scattering vector - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - average characteristic line width Deceased  相似文献   

5.
6.
Ritter O  Haase H  Morano I 《FEBS letters》1999,446(2-3):233-235
Skeletal muscle contraction of Limulus polyphemus, the horseshoe crab, seemed to be regulated in a dual manner, namely Ca2+ binding to the troponin complex as well phosphorylation of the myosin light chains (MLC) by a Ca2+/calmodulin-dependent myosin light chain kinase. We investigated muscle contraction in Limulus skinned fibers in the presence of Ca2+ and of Ca2+/calmodulin to find out which of the two mechanisms prevails in Limulus skeletal muscle contraction. Although skinned fibers revealed high basal MLC mono- and biphosphorylation levels (0.48 mol phosphate/mol 31 kDa MLC; 0.52 mol phosphate/mol 21 kDa MLC), the muscle fibers were fully relaxed at pCa 8. Upon C2+ or Ca2+/calmodulin activation, the fibers developed force (357+/-78.7 mN/mm2; 338+/-69.7 mN/mm2, respectively) while the MLC phosphorylation remained essentially unchanged. We conclude that Ca2+ activation is the dominant regulatory mechanism in Limulus skeletal muscle contraction.  相似文献   

7.
W S Fillers  S Chacko 《Biochemistry》1987,26(18):5896-5903
Actin activation of the adenosinetriphosphatase (ATPase) of phosphorylated gizzard myosin at low (2 mM) free Mg2+ concentration and 50 mM total ionic strength continues to increase on raising the free Ca2+ concentration near pCa 3. Similar levels of activity can be obtained by increasing the free Mg2+ concentration to a higher (in excess of 4 mM free) concentration. In the presence of micromolar concentrations of free Ca2+ and low free Mg2+ concentration, the actin-activated adenosine 5'-triphosphate (ATP) hydrolysis exhibits an initial rapid rate which progressively slows to a final, lower but more linear rate. In the presence of high divalent cation concentrations, the fast rate of ATP hydrolysis is maintained during the entire ATPase assay. The ionic conditions which favor the slow rate of ATP hydrolysis are correlated with increased proportions of folded myosin monomers while higher rates of ATP hydrolysis are correlated with increased levels of aggregated myosin. Elevating the thin filament proteins to saturating concentrations does not abolish the change in ATPase rate or the final distribution of myosin aggregates and monomers; however, the stability of the myosin aggregates is enhanced by the presence of thin filament proteins in low divalent cation conditions. The nonlinear profile of the actin-activated ATP hydrolysis in low divalent cation concentrations is eliminated by utilizing nonfilamentous, phosphorylated heavy meromyosin. The data presented indicate that Ca2+ and Mg2+ alter monomer-polymer equilibrium of stably phosphorylated myosin. The alteration of monomer-polymer equilibrium by Ca2+ at low Mg2+ concentration modulates ATPase rates.  相似文献   

8.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

9.
The polymerization of G-actin is prevented by concentrations of gadolinium (GdIII) that exceed the ATP present. Since the susceptibility of G-actin to enzymatic proteolysis is slightly decreased upon addition of GdIII, and the digestibility of F-actin is markedly increased with the same treatment, it appears that actin undergoes GdIII-induced conformational changes. The altered states of actin formed inhibit the GdIII-ATPase activity of myosin, but in all cases, the effect of GdIII on actin is reversed by removal of the trivalent ion with ATP. The reversible changes in conformation induced by GdIII create a state of actin which has properties unlike those of G-actin, F-monomer or F-actin.  相似文献   

10.
The actin of muscle and fibroblasts.   总被引:3,自引:3,他引:0       下载免费PDF全文
The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types.  相似文献   

11.
12.
Computer analysis of electron micrographs of negatively stained thick filaments isolated from the telson levator muscle of the horseshoe crab (Limulus polyphemus) has shown that they have a four-stranded helical structure. The repeating units along each helix have a bent extended shape (measuring approximately 20 nm × 8 nm × 8 nm) and are inclined at an angle of about 30 ° to the helical path. At the resolution of this study, it was difficult to establish the exact size of the surface subunits, but our results are probably more consistent with each unit representing the two heads of a single myosin molecule rather than larger aggregates.  相似文献   

13.
Mechanisms of actin rearrangements mediating platelet activation.   总被引:16,自引:6,他引:16       下载免费PDF全文
The detergent-insoluble cytoskeleton of the resting human blood platelet contains approximately 2,000 actin filaments approximately 1 micron in length crosslinked at high angles by actin-binding protein and which bind to a spectrin-rich submembrane lamina (Fox, J., J. Boyles, M. Berndt, P. Steffen, and L. Anderson. 1988. J. Cell Biol. 106:1525-1538; Hartwig, J., and M. DeSisto. 1991. J. Cell Biol. 112:407-425). Activation of the platelets by contact with glass results within 30 s in a doubling of the polymerized actin content of the cytoskeleton and the appearance of two distinct new actin structures: bundles of long filaments within filopodia that end at the filopodial tips (filopodial bundles) and a circumferential zone of orthogonally arrayed short filaments within lamellipodia (lamellipodial network). Neither of these structures appears in cells exposed to glass with cytochalasin B present; instead the cytoskeletons have numerous 0.1-0.3-microns-long actin filament fragments attached to the membrane lamina. With the same time course as the glass-induced morphological changes, cytochalasin-sensitive actin nucleating activity, initially low in cytoskeletons of resting platelets, increases 10-fold in cytoskeletons of thrombin-activated platelets. This activity decays with a time course consistent with depolymerization of 0.1-0.3-microns-long actin filaments, and phalloidin inhibits this decay. Cytochalasin-insensitive and calcium-dependent nucleation activity also increases markedly in platelet extracts after thrombin activation of the cells. Prevention of the rise in cytosolic Ca2+ normally associated with platelet activation with the permeant Ca2+ chelator, Quin-2, inhibits formation of lamellipodial networks but not filopodial bundles after glass contact and reduces the cytochalasin B-sensitive nucleation activity by 60% after thrombin treatment. The filopodial bundles, however, are abnormal in that they do not end at the filopodial tips but form loops and return to the cell body. Addition of calcium to chelated cells restores lamellipodial networks, and calcium plus A23187 results in cytoskeletons with highly fragmented actin filaments within seconds. Immunogold labeling with antibodies against gelsolin reveals gelsolin molecules at the ends of filaments attached to the submembrane lamina of resting cytoskeletons and at the ends of some filaments in the lamellipodial networks and filopodial bundles of activated cytoskeletons. Addition of monomeric actin to myosin subfragment 1-labeled activated cytoskeletons leads to new (undecorated) filament growth off the ends of filaments in the filopodial bundles and the lamellipodial network. The simplest explanation for these findings is that gelsolin caps the barbed ends of the filaments in the resting platelet. Uncapping some of these filaments after activation leads to filopodial bundles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Chicken muscle and fibroblast actin structure.   总被引:2,自引:2,他引:0       下载免费PDF全文
Double labelling and the isolation of peptides specific to muscle actin indicates that completely homologous 20-residue peptides can be produced from the C-terminal regions of muscle and chicken-embryo fibroblast actins by treatment with CNBr. By quantification of the amount of this peptide that can be produced from acetone-dried powders by CNBr treatment, 6.8% of the protein of the fibroblasts has been estimated to be actin.  相似文献   

15.
A A Lal  E D Korn 《Biochemistry》1986,25(5):1154-1158
At saturating concentrations, tropomyosin inhibited the rate of spontaneous polymerization of ATP-actin and also inhibited by 40% the rates of association and dissociation of actin monomers to and from filaments. However, tropomyosin had no effect on the critical concentrations of ATP-actin or ADP-actin. The tropomyosin-troponin complex, with or without Ca2+, had a similar effect as tropomyosin alone on the rate of polymerization of ATP-actin. Although tropomyosin binds to F-actin and not to G-actin, the absence of an effect on the actin critical concentration is probably explicable in terms of the highly cooperative nature of the binding of tropomyosin to F-actin and its very low affinity for a single F-actin subunit relative to the affinity of one actin subunit for another in F-actin.  相似文献   

16.
The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  相似文献   

17.
The 95,000 molecular weight protein (95K protein) of the false discharges of Limulus sperm, purified by means of preparative gel electrophoresis in the presence of sodium dodecyl sulfate, was compared with a 95K protein from Limulus muscle and chicken gizzard alpha-actinin. The results were as follows. 1) One-dimensional peptide mapping using four different proteases showed differences among these proteins. 2) Two-dimensional peptide mapping using trypsin showed that about 30% of the peptides in the digest of the sperm 95K protein were similar to those of chicken gizzard alpha-actinin and about 50% of the peptides were similar to those of the Limulus muscle 95K protein. 3) The sperm 95K protein contained relatively large amounts of Gly, Pro, and Ser and relatively small amounts of Glu and Leu compared to the muscle proteins. 4) Antibodies against the sperm 95K protein did not cross-react with the Limulus muscle 95K protein or chicken gizzard alpha-actinin. These results suggest that the 95K protein of sperm is different from alpha-actinin in primary structure.  相似文献   

18.
The actins are a group of highly conserved proteins encoded by a multigene family. We have previously reported that the skeletal muscle actin gene is located on mouse chromosome 3, together with several other unidentified actin DNA sequences. We show here that the gene coding for the cardiac muscle actin, which is closely related to the skeletal muscle actin (1.1% amino acid replacements), is located on mouse chromosome 17. The gene coding for the cytoplasmic beta-actin is located on mouse chromosome 5. Thus, these three actin genes are located on three different chromosomes.  相似文献   

19.
Structure of short thick filaments from Limulus muscle   总被引:3,自引:0,他引:3  
Shortened Limulus thick filaments, isolated from stimulated muscle, are structurally similar to long filaments, isolated from unstimulated muscle, except for length. Both have 3-fold screw symmetry with a helical repeat at approximately 43 nm, axial spacing of 14.5 nm between successive crowns of crossbridges and 4-fold rotational symmetry as estimated from the Bessel argument, by analysis of optical transforms of electron micrograph negatives of negatively stained samples. Both short and long filaments also have similar radii for the location of their crossbridges, thus similar diameters. Equal numbers of subunits/helical strand are also apparent on images of metal-shadowed long and short filaments. Since these data argue against molecular reorganization during filament shortening, it is suggested that the change in length of Limulus thick filaments may occur by reversible disaggregation of constituent protein molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号