首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The actin layer-lines were recorded from a frog semitendinosus muscle stretched to a sarcomere length greater than 4.4 microM. On activation of the muscle, the equator, the second layer-line at 1/18 nm-1 and the 5.9 nm layer-line increased in integrated intensity. On the other hand, the integrated intensity of the first layer-line at 1/36 nm-1 decreased markedly on activation. This decrease was not fully attributable to shifts of tropomyosin strands and therefore suggested a structural change in the actin subunit. The decrease may account for the apparent lack of an intensity increase of this layer-line on activation at normal muscle lengths where attachment of myosin heads to actin increases the intensities of other layer-lines.  相似文献   

2.
The pattern given by contracting frog muscle can be followed with high time resolution using synchrotron radiation as a high-intensity X-ray source. We have studied the behaviour of the second actin layer-line (axial spacing of approximately 179 A) at an off-meridional spacing of approximately 0.023 A-1, a region of the diagram that is sensitive to the position of tropomyosin in the thin filaments. In confirmation of earlier work, we find that there is a substantial increase in the intensity of this part of the pattern during contraction. We find that the reflection reaches half its final intensity about 17 milliseconds after the stimulus at 6 degrees C. The changes in the equatorial reflections, which arise from movement of crossbridges towards the thin filaments, occur with a delay of about 12 to 17 milliseconds relative to this change in the actin pattern. In over-stretched muscle, where thick and thin filaments no longer overlap, the changes in the actin second layer-line still take place upon stimulation with a time course and intensity similar to that observed at full overlap. This indicates that tropomyosin movement, in response to calcium binding to troponin, is the first structural step in muscular contraction, and is the prerequisite for myosin binding. A change in intensity similar to that found in contracting muscle is seen in rigor, where tropomyosin is probably locked in the active position. During relaxation the earlier stages in the decrease in intensity of the second actin layer-line take place significantly sooner after the last stimulus than tension decay. In over-stretched muscles the intensity decay is appreciably faster than in the same muscles at rest length, where attached crossbridges may interfere with the return of tropomyosin to its resting position.  相似文献   

3.
To clarify the extensibility of thin actin and thick myosin filaments in muscle, we examined the spacings of actin and myosin filament-based reflections in x-ray diffraction patterns at high resolution during isometric contraction of frog skeletal muscles and steady lengthening of the active muscles using synchrotron radiation as an intense x-ray source and a storage phosphor plate as a high sensitivity, high resolution area detector. Spacing of the actin meridional reflection at approximately 1/2.7 nm-1, which corresponds to the axial rise per actin subunit in the thin filament, increased about 0.25% during isometric contraction of muscles at full overlap length of thick and thin filaments. The changes in muscles stretched to approximately half overlap of the filaments, when they were scaled linearly up to the full isometric tension, gave an increase of approximately 0.3%. Conversely, the spacing decreased by approximately 0.1% upon activation of muscles at nonoverlap length. Slow stretching of a contracting muscle increased tension and increased this spacing over the isometric contraction value. Scaled up to a 100% tension increase, this corresponds to a approximately 0.26% additional change, consistent with that of the initial isometric contraction. Taken together, the extensibility of the actin filament amounts to 3-4 nm of elongation when a muscle switches from relaxation to maximum isometric contraction. Axial spacings of the layer-line reflections at approximately 1/5.1 nm-1 and approximately 1/5.9 nm-1 corresponding to the pitches of the right- and left-handed genetic helices of the actin filament, showed similar changes to that of the meridional reflection during isometric contraction of muscles at full overlap. The spacing changes of these reflections, which also depend on the mechanical load on the muscle, indicate that elongation is accompanied by slight changes of the actin helical structure possibly because of the axial force exerted by the actomyosin cross-bridges. Additional small spacing changes of the myosin meridional reflections during length changes applied to contracting muscles represented an increase of approximately 0.26% (scaled up to a 100% tension increase) in the myosin periodicity, suggesting that such spacing changes correspond to a tension-related extension of the myosin filaments. Elongation of the myosin filament backbone amounts to approximately 2.1 nm per half sarcomere. The results indicate that a large part (approximately 70%) of the sarcomere compliance of an active muscle is caused by the extensibility of the actin and myosin filaments; 42% of the compliance resides in the actin filaments, and 27% of it is in the myosin filaments.  相似文献   

4.
Thick filaments from leg muscle of tarantula, maintained under relaxing conditions (Mg-ATP and EGTA), were negatively stained and photographed with minimal electron dose. Particles were selected for three-dimensional image reconstruction by general visual appearance and by the strength and symmetry of their optical diffraction patterns, the best of which extend to spacings of 1/5 nm-1. The helical symmetry is such that, on a given layer-line, Bessel function contributions of different orders start to overlap at fairly low resolution and must therefore be separated computationally by combining data from different views. Independent reconstructions agree well and show more detail than previous reconstructions of thick filaments from Limulus and scallop. The strongest feature is a set of four long-pitch right-handed helical ridges (pitch 4 X 43.5 nm) formed by the elongated myosin heads. The long-pitch helices are modulated to give ridges with an axial spacing of 14.5 nm, lying in planes roughly normal to the filament axis and running circumferentially. We suggest that the latter may be formed by the stacking of a subfragment 1 (S1) head from one myosin molecule on an S1 from an axially neighbouring molecule. Internal features in the map indicate an approximate local twofold axis relating the putative heads within a molecule. The heads appear to point in opposite directions along the filament axis and are located very close to the filament backbone. Thus, for the first time, the two heads of the myosin molecule appear to have been visualized in a native thick filament under relaxing conditions.  相似文献   

5.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Previous studies demonstrated that actin filaments have variable twist in which the intersubunit angles vary by approximately +/- 10 degrees within a filament. In this work we show that this variability was unchanged when different methods were used to prepare filaments for electron microscopy. We also show that actin-binding proteins can modulate the variability in twist. Three preparations of actin filaments were photographed in the electron microscope: negatively stained filaments, replicas of rapidly frozen, etched filaments, and frozen hydrated filaments. In addition, micrographs of actin + tropomyosin + troponin (thin filaments), of actin + myosin S1 (decorated filaments), and of filaments frayed from the acrosomal process of Limulus sperm (Limulus filaments) were obtained. We used two independent methods to measure variable twist based on Fourier transforms of single filaments. The first involved measuring layer line intensity versus filament length and the second involved measuring layer line position. We measured a variability in the intersubunit angle of actin filaments of approximately 12 degrees independent of the method of preparation or of measurement. Thin filaments have 15 degrees of variability, but the increase over pure actin is not statistically significant. Decorated filaments and Limulus filaments, however, have significantly less variability (approximately 2 and 1 degree, respectively), indicating a torsional stiffening relative to actin. The results from actin alone using different preparative methods are evidence that variable twist is a property of actin in solution. The results from actin filaments in the presence of actin-binding proteins suggest that the angular variability can be modulated, depending on the biological function.  相似文献   

7.
Isometric skinned muscle fibers were activated by the photogeneration of a substoichiometric amount of ATP and their cross-bridge configurations examined during the development of the rigor force by x-ray diffraction and electron microscopy. By the photogeneration of approximately 100 microM ATP, approximately 2/3 of the concentration of the myosin heads in a muscle fiber, muscle fibers originally in the rigor state showed a transient drop of the force and then produced a long-lasting rigor force (approximately 50% of the maximal active force), which gradually recovered to the original force level with a time constant of approximately 4 s. Associated with the photoactivation, muscle fibers revealed small but distinct changes in the equatorial x-ray diffraction that run ahead of the development of force. After reaching a plateau of force, long-lasting intensity changes in the x-ray diffraction pattern developed in parallel with the force decline. Two-dimensional x-ray diffraction patterns and electron micrographs of the sectioned muscle fibers taken during the period of 1-1.9 s after the photoactivation were basically similar to those from rigor preparations but also contained features characteristic of fully activated fibers. In photoactivated muscle fibers, some cross-bridges bound photogenerated ATP and underwent an ATP hydrolysis cycle whereas a significant population of the cross-bridges remained attached to the thin actin filaments with no available ATP to bind. Analysis of the results obtained indicates that, during the ATP hydrolysis reaction, the cross-bridges detached from actin filaments and reattached either to the same original actin monomers or to neighboring actin monomers. The latter cross-bridges contribute to produce the rigor force by interacting with the actin filaments, first producing the active force and then being locked in a noncycling state(s), transforming their configuration on the actin filaments to stably sustain the produced force as a passive rigor force.  相似文献   

8.
The duty ratio, or the part of the working cycle in which a myosin molecule is strongly attached to actin, determines motor processivity and is required to evaluate the force generated by each molecule. In muscle, it is equal to the fraction of myosin heads that are strongly, or stereospecifically, bound to the thin filaments. Estimates of this fraction during isometric contraction based on stiffness measurements or the intensities of the equatorial or meridional x-ray reflections vary significantly. Here, we determined this value using the intensity of the first actin layer line, A1, in the low-angle x-ray diffraction patterns of permeable fibers from rabbit skeletal muscle. We calibrated the A1 intensity by considering that the intensity in the relaxed and rigor states corresponds to 0% and 100% of myosin heads bound to actin, respectively. The fibers maximally activated with Ca2+ at 4°C were heated to 31–34°C with a Joule temperature jump (T-jump). Rigor and relaxed-state measurements were obtained on the same fibers. The intensity of the inner part of A1 during isometric contraction compared with that in rigor corresponds to 41–43% stereospecifically bound myosin heads at near-physiological temperature, or an average force produced by a head of ∼6.3 pN.  相似文献   

9.
A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ∼40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically.  相似文献   

10.
X-ray diffraction patterns from mammalian heart muscle   总被引:8,自引:0,他引:8  
We have obtained light and X-ray diffraction patterns from trabecular and papillary muscles of various mammalian hearts in the living resting state and in rigor. Equatorial X-ray diffraction patterns from living muscles show the 1,0 and 1,1 reflections from a hexagonal lattice of filaments. The lattice spacing varies with sarcomere length over the observable range (2·0 to 2·5 μm) in such a manner that the lattice volume remains constant. In the living resting state the 1,0 reflection is stronger than the 1,1 reflection, whereas in rigor the 1,1 reflection is almost as strong as the 1,0 reflection. These intensity changes are similar to those found in vertebrate skeletal muscle, suggesting that the mechanism of cross-bridge attachment to actin is similar in both muscles.Two types of meridional X-ray diffraction pattern were observed in muscles in different conditions. One type, obtained from dead or glycerol-extracted muscles or from muscles treated with iodoacetate, showed a strong actin-related pattern but only a weak pattern associated with myosin. This type of pattern was similar to that from vertebrate skeletal muscle in rigor. The other type, obtained from living, resting muscle, showed a weaker actin pattern but a stronger myosin pattern. The myosin pattern included layer-line reflections associated with projections from the thick filaments. This second type of pattern was similar to that from resting vertebrate skeletal muscle, but the layer lines were weaker. The weakness of the myosin layer lines may indicate that part of the high resting tension found in heart muscle arises from a small amount of actin-myosin interaction in the resting state. Such interaction could provide a mechanism for varying the diastolic length of heart muscle and thereby the diastolic volume of the heart.  相似文献   

11.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

12.
The regulatory protein system in the skeletal muscle thin filaments is known to exhibit three discrete states, called "off" or "blocked" (no Ca2+), "on" or "closed" (with Ca2+ alone) and "potentiated" or "open" (with strongly bound myosin head) states. Biochemical studies have shown that only weak interactions with myosin are allowed in the second state. Characterization of each state is often difficult, because the equilibria among these states are readily shifted by experimental conditions. To overcome this problem, we chemically cross-linked the skeletal muscle thin filament in the three states with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), in overstretched muscle fibers. The state of the regulatory proteins was monitored by measuring the intensity of the second actin layer-line (2nd LL) reflection in X-ray diffraction patterns. Structurally, the thin filaments cross-linked in the three states exhibited three corresponding discrete levels of 2nd LL intensities, which were not Ca2+-sensitive any more. Functionally, the thin filament cross-linked in the "off-blocked" state inhibited strong interaction with myosin head (subgfragment-1 or S1). The thin filament cross-linked in the "potentiated-open" state allowed strong interaction and full ATPase activity of S1 as described previously. The thin filament cross-linked in the "on-closed" state allowed strong interactions with S1 and actin-activated ATPase without enhancing the 2nd LL to the level of "potentiated-open" state, contrary to the expectations from the biochemical studies. The results demonstrate the potential of EDC as a tool for studying the states of calcium regulation, and the apparent uncoupling between the 2nd LL intensity and the function provides a new insight into the mechanism of thin filament regulation.  相似文献   

13.
Previous low-angle X-ray diffraction studies of various vertebrate skeletal muscles have shown the presence of two rich layer-line patterns, one from the myosin heads and based on a 429 A axial repeat, and one from actin filaments and based on a repeat of about 360-370 A. In addition, meridional intensities have been seen from C-protein (MyBP-C; at about 440 A and its higher orders) and troponin (at about 385 A and its orders). Using preparations of intact, relaxed, bony fish fin muscles and the ID-02 low-angle X-ray camera at the ESRF with a 10 m camera length we have now seen numerous, hitherto unreported, sampled, X-ray layer-lines many of which do not fit onto the previously observed repeats and which require interpretation. The new reflections all fall on the normal ("vertical") hexagonal lattice row-lines in the highly sampled, almost "crystalline", low-angle diffraction X-ray patterns from bony fish muscle, indicating that they all arise from the muscle A-band. However, they do not fall on a single axial repeat. In direct confirmation of our previous analysis, some of these new reflections are explained by the interaction in resting muscle between the N-terminal ends of myosin-bound C-protein molecules with adjacent actin filaments, possibly through the Pro-Ala-rich region. Other newly observed reflections lie on a much longer repeat, but they are most easily interpreted in terms of the arrangement of troponin on the actin filaments. If this is so, then the implication is that the actin filaments and their troponin complexes are systematically arranged in the fish muscle A-band lattice relative to the myosin head positions, and that these newly observed X-ray reflections, when fully analysed, will report on the shape and distribution of troponin molecules in the resting muscle A-band. The less certain contributions of titin and nebulin to these new reflections have also been tested and are described. Many of the new reflections do not appear to come from these known structures. There must be structural features of the A-band that have not yet been described.  相似文献   

14.
Low angle X-ray diffraction patterns were recorded from crab leg muscle in living resting state and in rigor (glycerol-extracted). Both resting and rigor patterns showed a series of layer-lines arising from a helical arrangement of actin subunits in the thin filaments. In the resting state, the crossover repeat of the long-pitch actin helices was 36.6 nm, and the symmetry of the genetic actin helix was an intermediate between 2612 and 2813. When the muscle went into rigor, the crossover repeat changed to 38.3 nm and the helical symmetry to 2813.In the living resting pattern, six other reflections were observed on the meridian and in the near-meridional region. These were indexed as orders of 2 × 38.2 nm and could be assigned to troponin molecules; the spacings and the intensity distributions of these reflections could be explained by the model proposed by Ohtsuki (1974) for the arrangement of troponin molecules in the thin filaments.The muscle in rigor gave meridional and near-meridional reflections at orders of 2 × 38.3 nm. These were identified as the same series of reflections as was assigned to troponin in the living resting pattern, but were more intense and could be seen up to higher orders. We consider that the myosin heads attached to the thin filament at regular intervals along its axis also contribute to these reflections in the rigor pattern.  相似文献   

15.
In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 degrees C by two successive stimuli at an interval (80-100 ms) during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1.0 and 1.1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections (in both cases, about 15 ms), the delay (about 20 ms) between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contribute to tension development after their arrival in the vicinity of the thin filaments during contraction.  相似文献   

16.
Available high-resolution structures of F-actin, myosin subfragment 1 (S1), and their complex, actin-S1, were used to calculate a 2D x-ray diffraction pattern from skeletal muscle in rigor. Actin sites occupied by myosin heads were chosen using a "principle of minimal elastic distortion energy" so that the 3D actin labeling pattern in the A-band of a sarcomere was determined by a single parameter. Computer calculations demonstrate that the total off-meridional intensity of a layer line does not depend on disorder of the filament lattice. The intensity of the first actin layer A1 line is independent of tilting of the "lever arm" region of the myosin heads. Myosin-based modulation of actin labeling pattern leads not only to the appearance of the myosin and "beating" actin-myosin layer lines in rigor diffraction patterns, but also to changes in the intensities of some actin layer lines compared to random labeling. Results of the modeling were compared to experimental data obtained from small bundles of rabbit muscle fibers. A good fit of the data was obtained without recourse to global parameter search. The approach developed here provides a background for quantitative interpretation of the x-ray diffraction data from contracting muscle and understanding structural changes underlying muscle contraction.  相似文献   

17.
Xu S  Gu J  Belknap B  White H  Yu LC 《Biophysical journal》2006,91(9):3370-3382
When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A*M*ADP and A*M) and the weakly bound A*M*ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ("stereospecific" attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A*M*ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A*M*ADP*P(i), however, is poorly understood. This state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A*M*ADP*P(i) state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M*ATP, M*ADP*P(i) states and the weakly attached A*M*ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A*M*ADP*P(i). The series of experiments presented in this article were carried out under relaxing conditions at 25 degrees C, where approximately 95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A*M*ADP*P(i) state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M*ADP*P(i) with strongly coupled domains may contribute to the unique attachment configuration: the "primed" myosin heads may function as "transient struts" when attached to the thin filaments.  相似文献   

18.
Low-resolution three-dimensional structures of acto-myosin subfragment-1 (S1) complexes were retrieved from X-ray fiber diffraction patterns, recorded either in the presence or absence of ADP. The S1 was obtained from various myosin-II isoforms from vertebrates, including rabbit fast-skeletal and cardiac, chicken smooth and human non-muscle IIA and IIB species, and was diffused into an array of overstretched, skinned skeletal muscle fibers. The S1 attached to the exposed actin filaments according to their helical symmetry. Upon addition of ADP, the diffraction patterns from acto-S1 showed an increasing magnitude of response in the order as listed above, with features of a lateral compression of the whole diffraction pattern (indicative of increased radius of the acto-S1 complex) and an enhancement of the fifth layer-line reflection. The structure retrieval indicates that these changes are mainly due to the swing of the light chain (LC) domain in the direction consistent with the cryo-electron microscopic results. In the non-muscle isoforms, the swing is large enough to affect the manner of quasi-crystal packing of the S1-decorated actin filaments and their lattice dimension, with a small change in the twist of actin filaments. Variations also exist in the behavior of the 50K-cleft, which apparently opens upon addition of ADP to the non-muscle isoforms but not to other isoforms. The fast-skeletal S1 remains as the only isoform that does not clearly exhibit either of the structural changes. The results indicate that the "conventional" myosin-II isoforms exhibit a wide variety of structural behavior, possibly depending on their functions and/or the history of molecular evolution.  相似文献   

19.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

20.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号