首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

3.
The dynamics of calcium oscillations that activate mammalian eggs   总被引:1,自引:0,他引:1  
It has been known for some time that mammalian eggs are activated by a series of intracellular calcium oscillations that occur shortly after sperm egg membrane fusion. Recent work has identified a novel sperm specific phospholipase C zeta as the likely agent that stimulates the calcium oscillations in eggs after sperm-egg membrane fusion. PLCzeta is stimulated by low intracellular calcium levels in a manner which suggests that there is a regenerative feedback of calcium release and PLCzeta induced inositol 1,4,5-trisphophate (InsP(3)) production in eggs. This implies calcium oscillations in fertilizing mammalian eggs are driven by underlying oscillations of InsP(3). This model of oscillations is supported by the response of mouse eggs to sudden increases in InsP(3). The cellular targets of calcium oscillations include calmodulin-dependent protein kinases, protein kinase C and mitochondria. There is evidence that eggs might be best activated by multiple calcium increases rather than a single calcium rise. As yet we do not fully understand how the target of calcium in a mammalian egg might decode the patterns of calcium changes that can occur during egg activation.  相似文献   

4.
The TRPC3 channel, an intensively studied member of the widely expressed transient receptor potential (TRP) family, is a Ca(2+)-conducting channel activated in response to phospholipase C-coupled receptors. Despite scrutiny, the receptor-induced mechanism to activate TRPC3 channels remains unclear. Evidence indicates TRPC3 channels interact directly with intracellular inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) and that channel activation is mediated through coupling to InsP(3)Rs. TRPC3 channels were expressed in DT40 chicken B lymphocytes in which all three InsP(3)R genes were deleted (DT40InsP(3)R-k/o). Endogenous B-cell receptors (BCR) coupled through Syk kinase to phospholipase C-gamma (PLC-gamma) activated the expressed TRPC3 channels in both DT40w/t and DT40InsP(3)R-k/o cells. The diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) also activated TRPC3 channels independently of InsP(3)Rs. BCR-induced TRPC3 activation was blocked by the PLC enzymic inhibitor, U-73122, and also blocked by wortmannin-induced PLC substrate depletion. Neither U-73122 nor wortmannin modified either OAG-induced TRPC3 activation or store-operated channel activation in DT40 cells. Cotransfection of cells with both G protein-coupled M5 muscarinic receptors and TRPC3 channels resulted in successful M5 coupling to open TRPC3 channels mediated by PLC-beta. We conclude that TRPC3 channels are activated independently of InsP(3)Rs through DAG production resulting from receptor-mediated activation of either PLC-gamma or PLC-beta.  相似文献   

5.
At fertilization in mammals, the sperm activates the egg by inducing a series of oscillations in the intracellular free Ca(2+) concentration. There is evidence showing that this oscillatory event is triggered by a sperm-derived protein factor which diffuses into egg cytoplasm after gamete membrane fusion. At present the identity of this factor and its precise mechanism of action is unknown. Here, we studied the specificity of action of the sperm factor in triggering Ca(2+) oscillations in mammalian eggs. In doing so, we examined the patterns of Ca(2+) signaling in mouse eggs, zygotes, parthenogenetic eggs and maturing oocytes following the stimulation of bovine sperm extracts which contain the sperm factor. It is observed that the sperm factor could induce Ca(2+) oscillations in metaphase eggs, maturing oocytes and parthenogenetically activated eggs but not in the zygotes. We present evidence that Ca(2+) oscillations induced by the sperm factor require a maternal machinery. This machinery functions only once in mammalian oocytes and eggs, and is inactivated by sperm-derived components but not by parthenogenetic activation. In addition, it is found that neither InsP(3) receptor sensitivity to InsP(3) nor Ca(2+) pool size are the determinants that cause the fertilized egg to lose its ability to generate sperm-factor-induced Ca(2+) oscillations at metaphase. In conclusion, our study suggests that the orderly sequence of Ca(2+) oscillations in mammalian eggs at fertilization is critically dependent upon the presence of a functional maternal machinery that determines whether the sperm-factor-induced Ca(2+) oscillations can persist.  相似文献   

6.
Fertilization is accompanied by a rapid and transient calcium release in eggs, which is required for the onset of zygotic developmental program or 'egg activation'. Recently, it was found that Src family tyrosine kinase (SFK)-dependent phospholipase C (PLC) activity is necessary for the calcium transience in fertilized Xenopus eggs. The present study demonstrates that hydrogen peroxide (H2O2) stimulates protein-tyrosine phosphorylation in Xenopus eggs, which occurs primarily in the egg cortex of the animal hemisphere as revealed by indirect immunofluorescence study. Egg SFK was found to be upregulated by H2O2 while the SFK-specific inhibitor PP1 effectively blocked H2O2-induced tyrosine phosphorylation. As in fertilized eggs, PLCgamma, but not Shc, was tyrosine-phosphorylated in H2O2-treated eggs. H2O2 also caused inositol 1,4,5-trisphosphate (IP3) production and sustained calcium release. After limited application of H2O2, elevated SFK activity and tyrosine phosphorylation were quickly reversed. Under such conditions, eggs showed cortical contraction and dephosphorylation of p42 MAP kinase, both of which are indicative of egg activation. These egg activation events, as well as H2O2-induced IP3 production and calcium release, were sensitive to PP1 and PLC inhibitor U-73122. Together, the present study demonstrated that H2O2 can mimic, at least in part, early events of Xenopus egg activation that require an SFK-dependent PLC pathway.  相似文献   

7.
In a previous study (K.-I. Sato et al., 1999, Dev. Biol. 209, 308-320), we presented evidence that a Src-related protein-tyrosine kinase (PTK), named Xyk, may act upstream of the calcium release in fertilization of the Xenopus egg. In the present study, we examined whether PTK activation of phospholipase Cgamma (PLCgamma) plays a role in the fertilization-induced calcium signaling. Immunoprecipitation studies show that Xenopus egg PLCgamma is tyrosine phosphorylated and activated within a few minutes after fertilization but not after A23187-induced egg activation. Consistently, we observed a fertilization-induced association of PLCgamma with Xyk activity that was not seen in A23187-activated eggs. A Src-specific PTK inhibitor, PP1, blocked effectively the fertilization-induced association of PLCgamma with Xyk activity and up-regulation of PLCgamma, when microinjected into the egg. In addition, a PLC inhibitor, U-73122, inhibited sperm-induced inositol 1,4,5-trisphosphate production and the calcium transient and subsequent calcium-dependent events such as cortical contraction, elevation of fertilization envelope, and tyrosine dephosphorylation of p42 MAP kinase, all of which were also inhibited by PP1. On the other hand, A23187 could cause the calcium response and calcium-dependent events in eggs injected with PP1 or U-73122. These results support the idea that Xenopus egg fertilization requires Src-family PTK-dependent PLCgamma activity that acts upstream of the calcium-dependent signaling pathway.  相似文献   

8.
At fertilization in mammals, the sperm activates development by causing a prolonged series of intracellular Ca(2+) oscillations that are generated by increased production of inositol trisphosphate (InsP(3)). It appears that the sperm initiates InsP(3) generation via the introduction of a sperm factor into the egg after gamete membrane fusion. We recently identified a sperm-specific form of phospholipase C (PLC), referred to as PLCzeta(zeta). We review the evidence that PLCzeta represents the sperm factor that activates development of the egg and discuss the characteristics of PLCzeta that distinguish it from the somatic forms of PLC.  相似文献   

9.
Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca(2+) oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca(2+) release. The 'sperm factor' hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca(2+) transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLC zeta, that triggers Ca(2+) oscillations in mouse eggs indistinguishable from those at fertilisation. PLC zeta removal from sperm extracts abolishes Ca(2+) release in eggs. Moreover, the PLC zeta content of a single sperm was sufficient to produce Ca(2+) oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLC zeta as the molecular trigger for development of a fertilised egg into an embryo.  相似文献   

10.
To investigate the roles of inositol 1,4,5-trisphosphate (InsP3) and guanyl nucleotide binding proteins (G-proteins) in the transduction mechanism coupling fertilization and exocytosis of cortical vesicles in sea urchin eggs, we microinjected InsP3 and guanyl nucleotide analogs into eggs of Lytechinus variegatus. Injection of 28 nM InsP3 caused exocytosis. However, if the egg was first injected with EGTA ([Cai] less than or equal to 0.1 microM; EGTA = 1.6 mM), InsP3 injection did not cause exocytosis, supporting the hypothesis that InsP3 acts by causing a rise in intracellular free calcium. Injection of 28 microM guanosine-5'-0-(3-thiotriphosphate) (GTP-gamma-S), a hydrolysis-resistant analog of GTP, caused exocytosis, but exocytosis did not occur if the egg was pre-injected with EGTA. Injection of 3 mM guanosine-5'-0-(2-thiodiphosphate) (GDP-beta-S), a metabolically stable analog of GDP, prevented sperm from stimulating exocytosis. However, injection of GDP-beta-S did not prevent the stimulation of exocytosis by InsP3. These results suggested the following sequence of events. The sperm activates a G-protein, which stimulates production of InsP3. InsP3 elevates intracellular free calcium, which causes exocytosis.  相似文献   

11.
We have previously described a phospholipase C (PLC) activity in mammalian sperm cytosolic extracts. Here we have examined the Ca(2+) dependency of the enzyme, whether there is enough in a single sperm to account for Ca(2+) release at fertilization, and finally where in the egg is the phosphatidyl 4,5-bisphosphate, the substrate for the enzyme. As for all PLCs examined so far in vitro, we found that the boar sperm PLC activity was Ca(2+) dependent. Specific activity increased when free Ca(2+) levels were micromolar. However, even at nanomolar free Ca(2+) concentration the boar sperm PLC activity was considerable, being two orders of magnitude greater than PLC activities in other tissues. We calculated that PLC activity of a single boar sperm in a mammalian egg is enough to generate 400 nM inositol 1,4,5-trisphosphate (InsP(3)) in 1 min, which may be sufficient to account for the observed Ca(2+) changes in an egg at fertilization. We fractionated sea urchin egg homogenate and examined the ability of boar sperm extract to generate InsP(3) from these fractions. The sperm PLC activity triggered InsP(3) production from a PIP(2)-enriched nonmicrosomal egg compartment that contained yolk platelets. We propose that this sperm PLC activity, which is active at nanomolar Ca(2+) levels and hydrolyzes PIP(2) from intracellular membranes, could be involved in the Ca(2+) changes observed at fertilization.  相似文献   

12.
The second messengers 3'-5'-cyclic-monophosphate (cAMP) and inositol 1,4,5-trisphosphate (InsP3) have been implicated in olfactory signal transduction in various species. The results of the present study provide evidence that the two olfactory second messenger pathways in rat olfactory neurons do not work independently but rather show a functional antagonism: whereas inhibition of phospholipase C (PLC) in isolated olfactory cilia by U-73122 led to an augmentation of odor-induced cAMP signaling, activation of the phosphoinositol pathway resulted in attenuation of odor-induced cAMP formation. Furthermore, this study indicates that elevated cAMP levels cause suppression of odor-induced InsP3 signaling, whereas inhibition of adenylate cyclase (AC) by cisN-(2-phenylcyclopentyl)azacylotridec-1-en-2-amine (MDL-12,330 A) results in potentiation of odor-induced InsP3 formation. Concerning the molecular mechanism involved in cross-interaction, the experimental data indicate that the observed antagonism of elevated cAMP is based on inhibition of PLC activation rather than on stimulation of InsP3 degradation. As blockage of the endogenous protein kinase A (PKA) prevented the inhibitory effect of cAMP, the suppression of odor-induced InsP3 signaling by cAMP may be mediated by a PKA-controlled reaction.  相似文献   

13.
A calcium dependent-chloride current (I(ni)) was recorded in Xenopus oocytes injected with total RNA from chicory leaf tissues, following depolarization from -35 to +60 mV. However, the signal transduction mechanism mediating I(ni) is unknown. The development of this current was mimicked by intracellular injection of the second messenger InsP(3) in control (non-injected) oocytes. Moreover, InsP(3) injection after I(ni) rundown did not reinitiate the current. The same phenomenon was observed following a second injection into control oocytes. Measurement of InsP(3) production in injected oocytes showed a net increase in the InsP(3) level on depolarization. Moreover, extracellular application of caffeine (5 mM) significantly reduced the number of oocytes displaying I(ni). Also, extracellular application of U-73122, a potent PLC inhibitor, clearly reduced the occurrence of I(ni). These data provide the first evidence that the calcium homeostasis mechanism induced by heterologous expression of total RNA from chicory leaves involves the InsP(3) signaling pathway.  相似文献   

14.
Extensive cell movements accompany formation of the otic placode   总被引:11,自引:0,他引:11  
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization.  相似文献   

15.
The explosive increase in Ca2+ that occurs in the cytosol at fertilization is brought about by the activation of Ca2+-release channels in the intracellular stores. Inositol 1,4,5-trisphosphate (InsP3) is traditionally considered to be the messenger that initiates the increase and spreading of the activating Ca2+ wave. In line with this hypothesis, recent evidence suggests that the penetrating sperm delivers into mammalian eggs a novel isoform of phospholipase C (PLC), which promotes the formation of InsP3. By contrast, data from echinoderms studies indicate that the newly discovered second messenger nicotinic adenine dinucleotide phosphate (NAADP) promotes an initial, localized increase in Ca2+, which is then followed by the InsP3-mediated globalization of the Ca2+ wave. The mechanism by which the interacting sperm triggers the production of NAADP and subsequently that of InsP3 remains obscure.  相似文献   

16.
The aminoguanide, methylglyoxal bis(guanylhydrazone) (MGBG), was shown to stimulate phosphorylation of RR-SRC, a synthetic protein tyrosine kinase (PTK) substrate, and different levels of tyrosyl phosphorylation of endogenous proteins in a sea urchin egg membrane-cortex preparation. Stimulating protein tyrosine kinase activity in the sea urchin egg stimulated intracellular Ca2+ release, because microinjection of 1-5 mM of MGBG into unfertilized eggs triggered a transient rise in intracellular Ca2+ activity ([Ca2+]i) after a brief latent period. Pretreating eggs with PTK-specific inhibitors, genistein or tyrphostin B42, significantly inhibited the MGBG-induced rise in [Ca2+]i. Methylglyoxal bis(guanylhydrazone) stimulation of PTK activities in the unfertilized sea urchin egg appeared to trigger Ca2+ release through phospholipase C (PLC)-dependent inositol 1,4,5-trisphosphate (InsP3) production. The MGBG-induced Ca2+ response could be suppressed in eggs preloaded with the InsP3 receptor antagonist, heparin, and was reduced in eggs pretreated with U73122, a PLC inhibitor. However, the response was unchanged in eggs treated with nicotinamide, an inhibitor of ADP-ribosyl cyclase, or nifedipine, an inhibitor of nicotinic acid adenine dinucleotide phosphate activity. These results suggest that MGBG may be useful as a chemical agonist of PTK in sea urchin eggs and allow direct testing of the PTK requirement for the transient rise in [Ca2+]i in sea urchin eggs during fertilization. Although genistein was observed to significantly delay the onset, the sperm-induced Ca2+ response in PTK inhibitor-loaded eggs otherwise appeared normal. Therefore, it was concluded that sea urchin eggs contain a PTK-dependent pathway that can mediate intracellular Ca2+ release, but PTK activity does not appear to be required for the fertilization response.  相似文献   

17.
It has been recently shown that, in several genera of annelids, including Chaetopterus, fertilizing sperm attach to and fuse with egg microvilli which penetrate the vitelline envelope. This suggests that the annelid vitelline envelope may have no direct or obligatory role in normal fertilization. The present study was undertaken to investigate the involvement of the vitelline envelope in fertilization in Chaetopterus experimentally, by examining the fertilization of vitelline envelope-free eggs quantitatively and qualitatively. Brief exposure of the eggs to isotonic sucrose-EDTA removed the vitelline envelope as determined by both phase-contrast and electron microscopy, rendered the eggs more sensitive to polyspermy and substantially reduced the binding of supernumerary sperm to eggs but did not decrease fertilizability as determined by sperm dilution assay and did not make the eggs more sensitive to cross-fertilization. The events of fertilization were examined by electron microscopy and found to be very similar in vitelline envelope-free eggs to those in intact eggs. We conclude that the vitelline envelope in Chaetopterus has binding sites for sperm but that it has no obligatory role in fertilization and is primarily involved in the prevention of polyspermy.  相似文献   

18.
More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm‐specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought‐after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural–functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.  相似文献   

19.
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.  相似文献   

20.
Release of Ca(2+) from intracellular stores at fertilization of mammalian eggs is mediated by inositol 1,4,5-trisphosphate (IP3), but the mechanism by which the sperm initiates IP3 production is not yet understood. We tested the hypothesis that phospholipase C (PLC) activity introduced into the mouse egg as a consequence of sperm-egg fusion is responsible for causing Ca(2+) release. We demonstrated that microinjecting purified, recombinant PLCgamma1 protein into mouse eggs caused Ca(2+) oscillations like those seen at fertilization. However, the PLC activity in the minimum amount of purified PLCgamma1 protein needed to elicit Ca(2+) release when injected into eggs was approximately 500-900 times the PLC activity contained in a single sperm. This indicates that a single mouse sperm does not contain enough PLC activity to be responsible for causing Ca(2+) release at fertilization. We also examined whether phosphatidylinositol 3-kinase (PI3K) could have a role in this process, and found that several inhibitors of PI3K-mediated signaling had no effect on Ca(2+) release at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号