首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a population of the monogynous, polyandrous ant Cataglyphis cursor , we analysed the spatial genetic structure of queens, colony fathers and workers at a microgeographical scale to infer the extent of sex-biased dispersal and to assess the impact of limited dispersal on the patterns of relatedness within the colony. To this end, four microsatellite markers were scored for the queen and an average of 26 workers from each of 35 mapped colonies. We used pair-wise kinship coefficients between all pairs of genotypes, including the reconstructed colony father genotypes (1) to test and quantify isolation by distance patterns within each sex or caste through the analysis of kinship–distance curves, and (2) to compute the average relatedness between categories of colony members. The kinship–distance curve was much steeper for colony queens than colony fathers, indicating male-biased dispersal. However, colony fathers also displayed a non-random spatial genetic structure, so that even males show some dispersal limitation at the scale of the population, which extends over less than 250 m. The degree of relatedness between the different sexes and castes of colonies was well predicted from the number of mates per queen and the inbreeding of queens, and the impact of limited dispersal was very weak at this scale of observation. We discuss the interest of kinship–distance curves to assess sex-biased dispersal on a local scale and we compare our results with large-scale analyses of genetic structure in Cataglyphis cursor and other monogynous ant species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 465–473.  相似文献   

2.
The spatial scale over which genetic divergences occur between populations and the extent that they are paralleled by morphological differences can vary greatly among marine species. In the present study, we use a hierarchical spatial design to investigate genetic structure in Heliocidaris erythrogramma occurring on near shore limestone reefs in Western Australia. These reefs are inhabited by two distinct subspecies: the thick‐spined Heliocidaris erythrogramma armigera and the thin‐spined Heliocidaris erythrogramma erythrogramma, each of which also have distinct colour patterns. In addition to pronounced morphological variation, H. erythrogramma exhibits a relatively short (3–4 days) planktonic phase before settlement and metamorphosis, which limits their capacity for dispersal. We used microsatellite markers to determine whether patterns of genetic structure were influenced more by morphological or life history limitations to dispersal. Both individual and population‐level analyses found significant genetic differentiation between subspecies, which was independent of geographical distance. Genetic diversity was considerably lower within H. e. erythrogramma than within H. e. armigera and genetic divergence was four‐fold greater between subspecies than among populations within subspecies. This pattern was consistent even at fine spatial scales (< 5 km). We did detect some evidence of gene flow between the subspecies; however, it appears to be highly restricted. Within subspecies, genetic structure was more clearly driven by dispersal capacity, although weak patterns of isolation‐by‐distance suggest that there may be other factors limiting gene exchange between populations. Our results show that spatial patterns of genetic structure in Western Australian H. erythrogramma is influenced by a range of factors but is primarily correlated with the distribution of morphologically distinct subspecies. This suggests the presence of reproductive barriers to gene exchange between them and demonstrates that morphological variation can be a good predictor of genetic divergence. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 578–592.  相似文献   

3.
The population genetic structure of marine species lacking free-swimming larvae is expected to be strongly affected by random genetic drift among populations, resulting in genetic isolation by geographical distance. At the same time, ecological separation over microhabitats followed by direct selection on those parts of the genome that affect adaptation might also be strong. Here, we address the question of how the relative importance of stochastic vs. selective structuring forces varies at different geographical scales. We use microsatellite DNA and allozyme data from samples of the marine rocky shore snail Littorina saxatilis over distance scales ranging from metres to 1000 km, and we show that genetic drift is the most important structuring evolutionary force at distances > 1 km. On smaller geographical scales (< 1 km), divergent selection between contrasting habitats affects population genetic structure by impeding gene flow over microhabitat borders (microsatellite structure), or by directly favouring specific alleles of selected loci (allozyme structure). The results suggest that evolutionary drivers of population genetic structure cannot a priori be assumed to be equally important at different geographical scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 31–40.  相似文献   

4.
Due to the pronounced morphological variation and geographical distribution of Galápagos' Opuntia cacti, numerous hypotheses have been advanced regarding their radiation, diversification, and classification. The currently accepted classification is based on morphology and recognizes six species and fourteen varieties, but the plasticity of many of the characteristics renders any morphological taxonomy problematic. Our analysis of previously published morphological data agrees only partially with the current classification. We present the first molecular phylogeny of these plants. Multiple DNA sequences indicate little genetic distinction among the currently identified species, despite restricted gene flow and limited long distance dispersal within the archipelago. No clear relationship exists between morphological and genetic differences. These results suggest that both molecular and morphological data should be used in conservation planning.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 451–461.  相似文献   

5.
Local adaptation has central importance in the understanding of co-evolution, maintenance of sexual reproduction, and speciation. We investigated local adaptation in the alkaloid-bearing legume Crotalaria pallida and its seed predator, the arctiid moth Utetheisa ornatrix , at different spatial scales. When we studied three populations from south-east Brazil (150 km apart), we did not find evidence of local adaptation, although we did find interpopulational differences in herbivore performance, and a significant interaction between herbivore sex and plant population. These results indicate that both moth and plant populations are differentiated at the regional scale. In a comparison of populations from Brazil and Florida, the herbivore showed local adaptation to its host plant; for both moth populations, the pupae were heavier when the larvae ate the sympatric than the allopatric host population. We discuss the scale dependence of our results and the possible causes for the lack of local adaptation at the regional scale, even in the presence of plant and moth differentiation. The results obtained demonstrate the importance of studying co-evolution and local adaptation at different geographical scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 494–502.  相似文献   

6.
The phylogeography of the bark beetle Ips typographus was assessed using five microsatellite markers. Twenty-eight populations were sampled throughout Europe on the host tree Picea abies . I. typographus showed very low levels of genetic diversity, and the study revealed a lack of genetic structure across Europe. No significant barrier to gene flow was found, even though P. abies has a fragmented distribution. A weak but significant effect of isolation by distance was found. These results suggest a high dispersal capacity of I. typographus , which leads to low genetic differentiation between populations. Its high dispersal capacity is likely to have prevented I. typographus from developing important local adaptations to its host, which would have influenced its genetic structure. The nuclear data was compared to previously published mitochondrial data that showed strong differentiation between Central–Northern European populations and Russian–Baltic populations, and a founder effect in Scandinavia, probably reflecting the postglacial history of I. typographus . Discrepancies between nuclear and mitochondrial markers could be due to the maternal inheritance of mitochondrial DNA, and to sex-biased dispersal in I. typographus . The overall low genetic diversity observed on both markers on a large geographical scale is discussed. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 239–246.  相似文献   

7.
Allozyme analysis of tissue samples of 1249 white sea bream Diplodus sargus from five localities of the south-west Mediterranean revealed a high degree of genetic polymorphism. The observed heterozygosity ranged from 0.4182 (Cape of Palos) to 0.3138 (Tabarca). Several populations were characterized by unique alleles. Examination of the spatial structure was performed using Nei's distances and F- statistics, and indicated genetic differences between groups. One group, which clustered Tabarca and Guardamar, could be explained by the small geographical distance between them. Mazarrón and Cape of Palos samples showed genetic divergence from other samples (Guardamar, Tabarca and Águilas) and this difference may be as a result of local current systems and larval dispersal.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 249–261.  相似文献   

8.
The littorine genus Bembicium , restricted to Australia and Lord Howe and Norfolk Islands, provides special opportunities to examine the effects of contrasting modes of development on genetic divergence over large spatial and temporal scales. Two species, Bembicium auratum and Bembicium nanum , have planktotrophic larvae, and large, overlapping geographical distributions, whereas the three direct developers, Bembicium vittatum , Bembicium melanostoma , and Bembicium flavescens , are geographical replacements. Phylogenetic analysis of genetic distances at 28 allozyme loci supported the current taxonomic treatment of the genus and monophyly of the direct developers. Both individually and as a clade, the direct developers showed substantially greater divergence than the species with planktotrophic larvae. Controlling for geographical distance and for particular sections of coastline, genetic subdivision within the direct developers was shown to be much higher than in the planktotrophs. Low levels of subdivision in B. auratum and B. nanum over distances of 4000–6800 km indicate maintenance of substantial genetic connectivity, independent of habitat and biogeographical history. By contrast, the direct developers show clear genetic impacts of their geographical histories. Despite extreme genetic subdivision within species, the direct developers B. vittatum and B. melanostoma have geographically coherent and complementary distributions, associated with biogeographical provinces. Thus, speciation appears to be driven by special biogeographical circumstances, rather than simply by genetic divergence of locally isolated populations.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 689–704.  相似文献   

9.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

10.
Morphometric variation in the Robertsonian polymorphism zone of Barcelona of Mus musculus domesticus was studied by geometric morphometrics. This system is characterized by populations of reduced diploid number (2 n  = 27–39) surrounded by standard populations (2 n  = 40). We investigated the morphological variation in mice from this area, as well as the effect of geographical distance and karyotype on this variation. We also investigated the degree of co-variation between the two functional units of the mandible to explore the origin of this system (primary intergradation or secondary contact). The size and shape of the cranium, mandible and scapula were analysed for 226 specimens grouped by population, chromosome number and structural heterozygosity. Size was estimated as the centroid size, and shape was estimated after Procrustes superimposition. No significant differences in size between populations or chromosomal groups were detected. Diploid number, structural heterozygosity and local geographical isolation contributed to the differentiation in shape. Morphological differentiation between standard mice and Robertsonian specimens was observed, suggesting genetic isolation between these groups. Co-variation between the ascending ramus and alveolar region of the mandible was quantified by the trace correlation between landmark subsets of these modules. The trace values showed an ascending trend, correlated with the distance from the centre of the polymorphism area, a pattern consistent with a primary intergradation scenario.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 555–570.  相似文献   

11.
A common-garden experiment was conducted on larvae to test for genetic differences in body shape among populations of Atlantic cod ( Gadus morhua ). Offspring from four north-west Atlantic regions were reared from hatching to postmetamorphosis at two temperatures (7 ± 1 °C and 11 ± 1 °C) and two food levels (1500 and 4500 prey L−1). Body shape differed between populations and treatments. Population differences were greatest between south-west Scotian Shelf cod and those further north; the former were characterized by a deeper body, larger head, and longer caudal peduncle than cod from the other populations. Significant differences were also observed between two putative populations on the south-west Scotian Shelf, suggesting genetic divergence between spawning aggregations at small spatial scales (< 100 km). Temperature and food supply also influenced body shape, with the effect of the former being more pronounced. Individuals reared at the higher temperature or food level had a deeper body and a larger head than those reared at the lower temperature or food supply. Phenotypic responses to changes in the rearing environment also differed among populations, indicating genetic differences in phenotypic plasticity. Differences between populations in morphology and in phenotypic plasticity suggest genetic divergence at both large (> 1000 km) and small (< 100 km) spatial scales. The genetic differences at large spatial scales counteracted the expected effects of temperature differences in the wild, suggesting countergradient variation in morphology among these populations.  © 2006 Her Majesty the Queen in Right of Canada. Journal compilation © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 351–365.  相似文献   

12.
Patterns of intraspecific geographic variation in morphology and behaviour, when examined in a phylogenetic context, can provide insight into the microevolutionary processes driving population divergence and ultimately speciation. In the present study, we quantified behavioural and phenotypic variation among populations from genetically divergent regions in the Central American treefrog, Dendropsophus ebraccatus . Our fine-scale population comparisons demonstrated regional divergence in body size, colour pattern frequencies, and male advertisement call. None of the characters covaried with phylogenetic history or geographic proximity among sampled populations, indicating the importance of highly localized selection pressures and genetic drift in shaping character divergence among isolated regions. The study underscores how multiple phenotypic characters can evolve independently across relatively small spatial scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 298–313.  相似文献   

13.
The planktotrophic littorinid species Littoraria flava occupies a continuous habitat on rocky shores close to brackish and freshwater sources. Previous studies of this species have shown a moderate genetic structure over a broad geographical scale, with high deviations from Hardy–Weinberg expectations in many allozymic loci. Local-scale subdivision in marine species with a long dispersal phase is unexpected, but occasionally found. Using a horizontal transect at three locations, we examined whether microscale and short-term subdivision also occurred in L. flava populations and, if so, whether this could explain the Hardy–Weinberg deviations. Littoraria flava showed even more structuring on a microgeographical scale (4–300 m) than on a large-scale (> 200 km). The Ewens–Watterson neutrality test showed that 18% of the tests deviated significantly from the neutrality model. A homogeneity test for each locus across samples within transects showed homogeneous and high F IS values in many loci. These results and the apparent genetic patchiness within transects suggest that asynchronous spawning associated with recurrent colonizations in L. flava can explain the local differentiation without a recognizable pattern. In addition, there could be a balance between these factors and diversifying selection acting on different loci at different times and localities. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 23–36.  相似文献   

14.
Colony kin structure and spatial population structure were studied in multiple populations of the ant Formica lemani , using allozymes and DNA microsatellites. Average genetic relatedness between nestmate workers varied little between populations ( r  = 0.51–0.76), indicating that the average colony kin structure was relatively simple. Worker genotypes could not be explained with a single breeding pair in all nests, however, and the distribution of relatedness estimates across nests was bimodal, suggesting that single- and multi-queen colonies co-occur. We studied spatial population structure in a successional boreal forest system, which is a mixture of different aged habitats. Newly clear-cut open habitat patches are quickly colonized by F. lemani , where it is able to persist for a limited number of generations. Newly-founded populations showed signs of a founder effect and spatial substructuring, whereas older populations were more homogenous. This suggests that new populations are founded by a limited number of colonizers arriving from more than one source. Genetic differentiation among local populations was minor, indicating strong migration between them. There were, however, indications of both isolation by distance and populations becoming more isolated as habitat patches grew older.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 247–258.  相似文献   

15.
Although two cryptic pipistrelle bat species, Pipistrellus pipistrellus and Pipistrellus pygmaeus , belong among the most common bat species in Europe, it is still unclear whether they can migrate over long distances between summer and winter roosts. Long-distance migratory species may be expected to show low levels of genetic structuring in large areas due to regular mixing of the gene pool by mating that occurs during migration and/or hibernation. Conversely, the dispersal of gametes in sedentary species is spatially restricted, populations are more genetically structured, and isolation by relatively short distance is visible. By analysing diversity of highly variable microsatellites within and among summer colonies of both studied species in central Europe, we found that differentiation between populations is very weak. Both classical F ST and Bayesian clustering approach failed to detect genetic structure among colonies and there was no significant isolation-by-distance pattern. The analyses of relatedness, however, revealed that individuals within colonies are more related than random suggesting philopatry of at least one sex. The results were very similar for the two species. The high level of gene flow among central European populations, even on large geographic distances, is discussed in relation with migrations, dispersal, and mating behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 103–114.  相似文献   

16.
The relationship between habitat stability, demography, and population genetic structure was explored by comparing temporal microsatellite variability spanning a decade in two closely-related hermaphroditic freshwater snails from Cameroon, Bulinus forskalii and Bulinus camerunensis . Although both species show similar levels of preferential selfing, microsatellite analysis revealed significantly greater allelic richness and gene diversity in populations of the highly endemic B. camerunensis compared to those of the geographically-widespread B. forskalii . Additionally, B. camerunensis populations showed significantly lower spatial genetic differentiation, higher dispersal rates, and greater temporal stability compared to B. forskalii populations over a similar spatial scale. This suggests that a more stable demography and greater gene flow account for the elevated genetic diversity observed in this geographically-restricted snail. This contrasts sharply with a metapopulation model (which includes extinction/contraction, recolonization/expansion, and passive dispersal) invoked to account for population structuring in B. forskalii . As intermediate hosts for medically important schistosome parasites, these findings have ramifications for determining the scale at which local adaptation may occur in the coevolution of these snails and their parasites.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 747–760.  相似文献   

17.
Previous studies have indicated that the common European pipistrelle bat ( Pipistrellus pipistrellus ) comprises two cryptic species, P. pipistrellus and Pipistrellus pygmaeus , which differ in echolocation call frequency and mitochondrial DNA sequence. However, levels of divergence based on nuclear markers have not been examined, and hence the potential for male-mediated gene flow between the species cannot be discounted. Moreover, little is known about population structure and migration patterns in either species. Here, we describe the use of microsatellites to investigate nuclear DNA differentiation between, and the pattern of population genetic structure within, the two cryptic pipistrelle species. In total, 1300 individuals from 82 maternity colonies were sampled across the British Isles and Continental Europe. We show, using multivariate analyses, that colonies of the same species are generally genetically more similar to each other than to those from the other species regardless of geographical location. Our findings support the hypothesis that the species are reproductively isolated. Significant patterns of genetic isolation by distance were identified in both species, indicating that mating may occur before any long-distance autumnal migration. The presence of a sea channel does not confer higher levels of genetic differentiation among colonies over and above distance alone in either species. Differences in genetic population structure were identified between the species, with P. pipistrellus showing a wider range of levels of genetic differentiation among colonies and a stronger relationship between genetic and geographical distance than P. pygmaeus . Differences in dispersal, mating behaviour, colony size and/or postglacial colonization patterns could contribute to the differences observed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 539–550.  相似文献   

18.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

19.
A number of studies have documented interpopulation divergence in amphibian larval life-history traits across latitudes. Because many frogs are philopatric and have a patchy habitat distribution, genetic divergence could also exist on a much smaller geographical scale, revealed by recent estimates of population divergence using molecular markers. Whether this divergence is reflected in phenotypic traits is virtually unknown. Using artificial fertilization, individuals of the common frog, Rana temporaria , were crossed from two populations situated 130 km apart and differing in population size. The pattern of size at metamorphosis showed evidence of non-additive effects, as demonstrated by a significant interaction between male and female population of origin. Outbreeding resulted in an increase in metamorph size when eggs from the small population were fertilized with sperm from the large population. In the reciprocal cross, however, the pattern was in the opposite direction, with no significant effect of male population of origin. Genetic divergence of populations separated by a relatively short geographical distance may be more common in frogs than previously acknowledged, with potential implications for conservation of declining amphibian species.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 189–195.  相似文献   

20.
Cicada barbara (Stål) and Cicada orni L. are two Mediterranean cicadas, very similar in morphology, that produce distinct acoustic mating signals and that have partially overlapping distribution ranges in the Iberian Peninsula, occurring in sympatry in several locations. In the present study, six microsatellite loci were analysed in C. barbara , four of which were also analysed in C. orni . Geographical and temporal genetic variation in these species was studied. No evidence of hybridization was found, enabling us to infer that the isolating barriers between these species are efficient. Partitioning of geographic variation in each species, revealed the following patterns: Iberian Peninsula and Northwestern African populations of C. barbara showed higher differentiation between than within each region, supporting C. barbara subspecific taxonomy ( C. barbara lusitanica in the Iberian Peninsula and C. barbara barbara in Northwestern Africa) and highlighting isolation coincident with the presence of physical barriers to gene-flow; differentiation between populations of C. orni from both sides of the Pyrenees was very low, and this mountain range may not constitute a significant barrier for the dispersal of this species; Greek populations of C. orni were found to be highly differentiated from Western European populations; and no pattern of isolation-by-distance was found in either species within the Iberian Peninsula.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 249–265.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号