首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of reactive oxygen species (ROS) constitutes an important first reaction under many stress conditions in plants. We demonstrate that Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells in suspension cultures, generate superoxide radical and hydrogen peroxide upon treatment with cadmium and zinc. Addition of catalase and N,N-diethyldithiocarbamate (DDC) decreased the level of H2O2, whereas superoxide dismutase (SOD) induced a slight increase of the H2O2 production. The effects of catalase, DDC and SOD on the heavy metal-induced ROS production indicate that it occurs outside of the cells, and that at least part of the hydrogen peroxide is produced by dismutation of the superoxide radical (O2 ·−). The effect of pretreatment of the cell cultures with commonly used mammalian NADPH oxidase inhibitors was also tested. Strong inhibitions of cadmium and zinc-mediated ROS production were obtained with the flavoprotein inhibitors—diphenylene iodonium (DPI) and quinacrine and with an inhibitor of b-type cytochromes—imidazol. Membrane permeable-N-ethyl maleimide (NEM) and iodoacetate, and membrane non-permeable thiol reagents—para-chloromercuribenzoic acid (pCMBS) also inhibited the ROS production. These results suggested that the enzyme responsible for cadmium and zinc-induced ROS production in tobacco cells contains a flavocytochrome. They also show the importance of intra- and extracellular thiol groups in the observed stress reaction. The induction of ROS production with heavy metals showed properties comparable to the elicitor-induced oxidative burst in other plant cells.  相似文献   

2.
Summary The effect of low concentrations of hydrogen peroxide (H2O2) (5 × 10−7−9.5 × 10−7 M) on cell growth and antibody production was investigated with murine hybridoma cells (Mark 3 and anti-hPL) in culture. Cell growth, measured by flow cytometry with morphological parameters, was significantly stimulated by H2O2 (8 × 10−7 M) but H2O2 concentration of 7 × 10−6 M and above increased cell death. H2O2 stimulation of antibody production was nonsignificant. The metabolism of cells treated with 8 × 10−7 or 1 × 10−5 M H2O2 was similar to that of the control in terms of glucose and glutamine consumption, lactate and ammonia production, and amino acid concentrations in the medium. The concentrations of lactate dehydrogenase, a marker of cell death, in test and control cells were similar. However, concentrations of intracellular free radicals measured by flow cytometry with dihydrorhodamine 123 (DHR 123) and dichlorofluorescein diacetate (DCFH-DA) as fluorochromes were different. The reactive oxygen species content of cells in 8 × 10−7 M H2O2 was similar to that of the controls, but there was a sudden, marked production of superoxide anions (detected with DHR 123) and H2O2 or peroxides (detected with DCFH-DA) by cells incubated with 1 × 10−5 M H2O2 which increased with increasing H2O2 until cell death.  相似文献   

3.

Background and Aims

The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum.

Methods

Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs.

Key Results

The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level.

Conclusions

The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip.  相似文献   

4.
Previously, effect of Al ions on calcium signaling was assessed in tobacco cells expressing a Ca2+-monitoring luminescent protein, aequorin and a newly isolated putative plant Ca2+ channel protein from Arabidopsis thaliana, AtTPC1 (two-pore channel 1). TPC1 channels were shown to be the only channel known to be sensitive to Al and they are responsive to reactive oxygen species and cryptogein, a fungal elicitor protein. Thus, involvement of TPC1 channels in calcium signaling leading to development of plant defense mechanism has been suggested. Then, the use of Al as a specific inhibitor of TPC1-type plant calcium channels has been proposed. Here, using transgenic tobacco BY-2 cells expressing aequorin, we report on the evidence in support of the involvement of Al-sensitive signaling pathway requiring TPC1-type channel-dependent Ca2+ influx in response to salicylic acid, a key plant defense-inducing agent, but not to an elicitor prepared from the cell wall of rice blast disease fungus Magnaporthe grisea. In addition, involvement of Al-sensitive Ca2+ channels in response to cold shock was also tested. The data suggested that the elicitor used here induces the Ca2+ influx via Al-insensitive path, while salicylic acid and cold-shock-stimulate the influx of Ca2+ via Al-sensitive mechanism.  相似文献   

5.
Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells   总被引:2,自引:0,他引:2  
Yasuda H  Kanda K  Koiwa H  Suenaga K  Kidou S  Ejiri S 《Planta》2005,222(1):118-129
Actin filaments are among the major components of the cytoskeleton, and participate in various cellular dynamic processes. However, conflicting results had been obtained on the localization of actin filaments on the mitotic apparatus and their participation in the process of chromosome segregation. We demonstrated by using rhodamine-phalloidin staining, the localization of actin filaments on the mitotic spindles of tobacco BY-2 cells when the cells were treated with cytochalasin D. At prophase, several clear spots were observed at or near the kinetochores of the chromosomes. At anaphase, the actin filaments that appeared to be pulling chromosomes toward the division poles were demonstrated. However, as there was a slight possibility that these results might have been the artifacts of cytochalasin D treatment or the phalloidin staining, we analyzed the localization of actin filaments at the mitotic apparatus immunologically. We cloned a novel BY-2 -type actin cDNA and prepared a BY-2 actin antibody. The fluorescence of the anti-BY-2 actin antibody was clearly observed at the mitotic apparatus in both non-treated and cytochalasin D-treated BY-2 cells during mitosis. The facts that similar results were obtained in both actin staining with rhodamine-phalloidin and immunostaining with actin antibody strongly indicate the participation of actin in the organization of the spindle body or in the process of chromosome segregation. Furthermore, both filamentous actin and spindle bodies disappeared in the cells treated with propyzamide, which depolymerizes microtubules, supporting the notion that actin filaments are associated with microtubules organizing the spindle body.Hiroshi Yasuda and Katsuhiro Kanda contributed equally.  相似文献   

6.
Reactive oxygen species (ROS) have generated a great deal of interest in the clinical field since experimental studies showed the involvement of these species in carcinogenesis. This paper reports the detection of ROS during the decomposition of H2O2 in the presence of samples obtained from tissues of 16 patients with rectal carcinoma (age 64 +/- 9 years) operated on in the Division of Surgical Oncology of Pomeranian Medical University, Szczecin (Poland). The samples were cut from the middle of the resected tumors and from the colonic mucosa (10 cm distant from the tumor and free of disease); they were processed and the supernatants, representing the soluble fraction, were used for measurements. Various methods for measuring free radical activity of the examined samples were used, such as chemiluminescence, fluorescent probe 2',7'-dichlorodihydrofluorescein, spin trap 5,5-dimethyl-pyrroline-1-oxide and EPR, the spectrophotometrically examined formation of diformazan during reduction of the p-nitroblue tetrazolium salt, and bleaching of p-nitrosodimethylalanine. A statistically significant difference (P < 0.001) was noticed in mean chemiluminescence +/- standard error of the mean in the presence of the tumor samples (42.6 +/- 7.3) in comparison to the control samples (234.6 +/- 36.0). Significantly decreased generation of ROS from the decomposition of H2O2 in the presence of the tumor samples in comparison to the control samples was also observed when the above-mentioned methods were used. Tumor samples had significantly lower superoxide dismutase activity (33 +/- 4 U/mg protein) than controls (93 +/- 14 U/mg, P < 0.001), which should contribute to a lower capacity of endogenous H2O2 production and therefore less ROS generation upon H2O2 decomposition. We conclude that the tested samples have different redox properties; this supports a possible role of ROS activity during carcinogenesis. Moreover, we propose a new, simple, and sensitive chemiluminescent method, which might be effective in sample differentiation.  相似文献   

7.
Increasing evidence suggests a role for apoptosis in the maintenance of the alveolar epithelium under normal and pathological conditions. However, the signaling pathways modulating alveolar type II (ATII) cell apoptosis remain poorly defined. Here we investigated the role of MAPKs as modulators of oxidant-mediated ATII cell apoptosis using in vitro models of H(2)O(2)-stress. H(2)O(2), delivered either as a bolus or as a flux, lead to time- and concentration-dependent increases in ATII cells apoptosis. Increased apoptosis in primary rat ATII cells was detected at H(2)O(2) concentrations and production rates in the physiological range (1 microM) and peaked at 100 microM H(2)O(2). Immortalized rat lung epithelial cells (RLE), in contrast, required millimolar concentration of H(2)O(2) for maximal responses. H(2)O(2)-induced apoptosis was preceded by rapid activation of all three classes of mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38. Specific inhibition of JNK using antisense oligonucleotides and ERK and p38 using PD98059 or SB202190, respectively, indicated a pro-apoptotic role for JNK pathway and an anti-apoptotic role for ERK- and p38-initiated signaling events. Our data show that the balance between the activation of JNK, ERK, and p38 is a critical determinant of cell fate, suggesting that pharmacological interventions on the MAPK pathways may be useful in the treatment of oxidant-related lung injury.  相似文献   

8.
The effects of hydrogen peroxide (H2O2), nitric oxide (NO), and a combination of both on the metabolism of cell wall polysaccharides were studied in tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY-2) suspension cultured cells in the presence of D-[U-14C]glucose or D-[U-14C]galactose as radioactive tracers. We found that the radiolabelling of newly synthesised total cell wall polysaccharides (pectins, hemicelluloses and alpha-cellulose), buffer-soluble polysaccharides, and membrane-associated polysaccharides decreased under the influence of exogenous systems generating H2O2 and NO. However, when the total amount of newly synthesised cell wall polysaccharides was calculated as a percentage of the total cellular radioactivity (ethanol-soluble pool plus the homogenate of ethanol-insoluble material), all treatments showed negligible effects in the presence of D-[U-14C]glucose or D-[U-14C]galactose as tracers. This occurred because the treatments generating H2O2, NO and H2O2 plus NO caused a marked decrease in the concentration of the ethanol-soluble pool as well as in the total radioactivity found in the homogenate of the ethanol-insoluble material. Most of the radioactivity taken up by the cells was evolved as 14CO2 during the respiratory processes. A qualitative and quantitative characterisation of the ethanol-soluble pool showed that radioactive UDP-sugars in BY-2 suspension cultured cells were differentially reduced by all treatments. Therefore, the decrease of the newly synthesised cell wall polysaccharides seems to be strictly dependent on the reduction of the UDP-sugars pool.  相似文献   

9.
It has been observed that H9c2 cardiac cells cultured in physiologic solutions exhibit delayed cell death after repeated medium replacements, of which the cause was the relatively mild osmotic challenges during the renewal of the culture medium. Interestingly, the cell damage was associated with altered intracellular GSH homeostasis. Therefore, this study attempted to elucidate the effects of osmotic stress on GSH metabolism. In cells subjected to osmotic stress by lowering the NaCl concentration of the medium, the cell swelling was rapidly counterbalanced, but the intracellular GSH content was significantly lower in 3 h. Meanwhile, the ratio of GSH-to-GSSG was not affected. As expected, osmotic stress also increased the sensitivity to H2O2, which was attributable to the decrease of GSH content. The decrease of GSH content was similarly evident when the synthetic pathways of GSH were blocked by BSO or acivicin. It was concluded that osmotic stress induced the decrease of intracellular GSH content by increased consumption and this loss of GSH rendered the cells susceptible to a subsequent oxidative stress.  相似文献   

10.
To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.  相似文献   

11.
12.
Treatment of tobacco BY‐2 cells with micromolar concentration of benzyladenosine ([9R]BA) resulted in the loss of cell viability in a time‐ and concentration‐dependent manner. Cell death induced by [9R]BA exhibited typical apoptotic hallmarks including cell shrinkage, chromatin condensation and degradation of nuclear DNA to characteristic high molecular weight (HMW) as well as nucleosomal size fragments. Externally added [9R]BA was very rapidly and almost quantitatively phosphorylated within BY‐2 cells. Accumulation of [9R]BA‐monophosphate was accompanied by massive production of endogenous reactive oxygen species (ROS), intracellular ATP depletion, and these events were followed by the loss of cell viability. Inhibition of intracellular phosphorylation of [9R]BA by adenosin kinase inhibitor, 5′‐amino‐5′‐deoxyadenosine (AdAs), diminished ROS production, ATP depletion, and consequently prevented cells from death. Selective inhibition of ROS production without restoring ATP production, however, did not provide any protection to cells. In contrast, even enhanced phosphorylation of [9R]BA caused by adenosine that simultaneously revived ATP synthesis reduced the number of dying cells. This is the first evidence of a direct relationship between intracellular phosphorylation of [9R]BA and apoptosis induction in BY‐2 cells. ATP depletion but not ROS production is the key secondary event that determines the cellular decision between life and death.  相似文献   

13.
盐分胁迫是植物在自然环境中经常遭遇的环境胁迫因素之一,会引起植物代谢紊乱乃至细胞死亡,这严重限制了植物的生长、繁育和生存。交替呼吸途径是植物较之动物独特的线粒体呼吸途径。该研究在烟草悬浮细胞中调查了交替呼吸途径对Na Cl胁迫引起的植物细胞死亡过程的调节作用及相应的内在机制,以及在200 mmol·L~(-1)Na Cl处理的烟草悬浮细胞中研究了交替呼吸途径和细胞死亡发生及H_2O_2之间的关系。结果表明:(1)随着Na Cl处理浓度的增加,烟草悬浮细胞死亡水平逐渐增加,而交替呼吸途径的容量也逐渐上升。(2)与Na Cl处理相似,外源H_2O_2的处理也能导致烟草悬浮细胞死亡水平的增加。200 mmol·L~(-1)Na Cl的胁迫导致明显的细胞死亡发生和H_2O_2产量的显著性增加;而较之200 mmol·L~(-1)Na Cl胁迫下的细胞,用水杨基氧肟酸(交替呼吸途径的抑制剂)预处理后的细胞再置于200 mmol·L~(-1)Na Cl的胁迫下导致更高水平的细胞死亡和H_2O_2的产生。综上表明,高盐胁迫诱导了烟草悬浮细胞的交替呼吸途径的增加,而交替呼吸途径则可能通过抑制活性氧的产生而起到缓解细胞死亡发生的作用。  相似文献   

14.
Growth is one of the basic properties of biological systems. The methods which are commonly used for the determination of growth are usually difficult and not very accurate. In the present work we decided to use esterase activity as a growth marker in tobacco suspension culture (BY-2 line) and in early somatic embryos of Norway spruce (clone 2/32) grown on a semi-solid medium. Esterase activity correlates well with the classical growth characteristics of BY-2 and spruce early somatic embryos. Determination of esterase activity is based on spectrophotometric and spectrofluorimetric detection of reaction products, which arise from the enzymatic hydrolysis of two substrates (p -nitrophenyl acetate and fluorescein diacetate) by esterase. The spectrophotometric method enabled us to detect approximately 104 BY-2 cells and 25 spruce embryos whereas the more sensitive spectrofluorimetric method allowed us to detect approximately 800 BY-2 cells and 5 early somatic embryos of Norway spruce.  相似文献   

15.
Effects of magnetic fields (MFs) on the activities of antioxidant enzymes of suspension-cultured tobacco cells were investigated. Compared with the control cells, exposure of the cells to static MF with the magnitudes of 10 and 30 mT for 5 days, 5 h each day, increased the activity of superoxide dismutase (SOD). In contrast, the activity of the catalase (CAT) and ascorbate peroxidase (APX) was decreased by MF, compared with those of the control cells. Level of lipid peroxidation was also increased by MF. It suggests that MF could deteriorate antioxidant defense system of plant cells.  相似文献   

16.
Summary. Complete depolymerization of actin filaments (AFs) at low temperature (0 °C) is followed by the formation of transient actin structures at 25 °C in tobacco BY-2 cells (Nicotiana tabacum L.). Using antibodies against fission yeast actin-related proteins (ARP2 and ARP3), we show here that transient actin structures (dots, dotted filaments, rods) colocalize with epitopes stained by these antibodies and thus are likely to represent sites of actin filament nucleation (SANs). In contrast to the cold-induced disassembly of AFs, no transient actin structures were detectable during recovery of AFs from latrunculin B-induced depolymerization. However, the staining pattern obtained with ARP antibodies in latrunculin B-treated cells was similar to that in controls and cold-treated cells. This suggests that, in addition to the complete depolymerization of AFs, disruption of other cellular structures is needed for the formation of transient actin structures during the early phase of recovery from cold treatment. Correspondence and reprints: Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic.  相似文献   

17.
The pine wood nematode, Bursaphelenchus xylophilus, is an invasive plant parasitic nematode and a worldwide quarantine pest. An indigenous species in North America and the causal agent of pine wilt disease, B. xylophilus has devastated pine production in Southeastern Asia including Japan, China, and Korea since its initial introduction in the early 1900s. The reactive oxygen species (ROS) is the first line of defense utilized by host plants against parasites, while nematodes, counteractively, employ antioxidants to facilitate their infection. Peroxiredoxins (Prxs) are a large class of antioxidants recently found in a wide variety of organisms. In this report, a gene encoding a novel 2-cysteine peroxiredoxin protein in B. xylophilus was cloned and characterized. The 2-cysteine peroxiredoxin in B. xylophilus (herein refers to as "BxPrx") is highly conserved in comparison to 2-cysteine peroxiredoxins (Prx2s) in other nematodes, which have two conserved cysteine amino acids (Cp and Cr), a threonine-cysteine-arginine catalytic triad, and two signature motifs (GGLG and YF) sensitive to hydrogen peroxide. In silico assembly of BxPrx tertiary structure reveals the spatial configuration of these conserved domains and the simulated BxPrx 3-dimensional structure is congruent with its presumed redox functions. Although no signal peptide was identified, BxPrx was abundantly expressed and secreted under the B. xylophilus cuticle. Upon further analysis of this leader-less peptide, a single transmembrane α-helix composed of 23 consecutive hydrophobic amino acids was found in the primary structure of BxPrx. This transmembrane region and/or readily available ATP binding cassette transporters may facilitate the transport of non-classical BxPrx across the cell membrane. Recombinant BxPrx showed peroxidase activity in vitro reducing hydrogen peroxide using glutathione as the electron donor. The combined results from gene discovery, protein expression and distribution profiling (especially the "surprising" presence under the nematode cuticle), and recombinant antioxidant activity suggest that BxPrx plays a key role in combating the oxidative burst engineered by the ROS defense system in host plants during the infection process. In summary, BxPrx is a genetic factor potentially facilitating B. xylophilus infestation.  相似文献   

18.
19.
Exposure to adverse temperature conditions is a common stress factor for plants. In order to cope with heat stress, plants activate several defence mechanisms responsible for the control of reactive oxygen species (ROS) and redox homeostasis. Specific heat shocks (HSs) are also able to activate programmed cell death (PCD). In this paper, the alteration of several oxidative markers and ROS scavenging enzymes were studied after subjecting cells to two different HSs. Our results suggest that, under moderate HS, the redox homeostasis is mainly guaranteed by an increase in glutathione (GSH) content and in the ascorbate peroxidase (APX) and catalase (CAT) activities. These two enzymes undergo different regulatory mechanisms. On the other hand, the HS-induced PCD determines an increase in the activity of the enzymes recycling the ascorbate- and GSH-oxidized forms and a reduction of APX; whereas, CAT decreases only after a transient rise of its activity, which occurs in spite of the decrease of its gene expression. These results suggest that the enzyme-dependent ROS scavenging is enhanced under moderate HS and suppressed under HS-induced PCD. Moreover, the APX suppression occurring very early during PCD, could represent a hallmark of cells that have activated a suicide programme.  相似文献   

20.
Most commercial tobacco cultivars possess the Rk1 resistance gene to races 1 and 3 of Meloidogyne incognita and race 1 of Meloidogyne arenaria, which has caused a shift in population prevalence in Virginia tobacco fields toward other species and races. A number of cultivars now also possess the Rk2 gene for root-knot resistance. Experiments were conducted in 2013 to 2014 to examine whether possessing both Rk1 and Rk2 increases resistance to a variant of M. incognita race 3 compared to either gene alone. Greenhouse trials were arranged in a completely randomized design with Coker 371-Gold (C371G; susceptible), NC 95 and SC 72 (Rk1Rk1), T-15-1-1 (Rk2Rk2), and STNCB-2-28 and NOD 8 (Rk1Rk1 and Rk2Rk2). Each plant was inoculated with 5,000 root-knot nematode eggs; data were collected 60 d postinoculation. Percent galling and numbers of egg masses and eggs were counted, the latter being used to calculate the reproductive index on each host. Despite variability, entries with both Rk1 and Rk2 conferred greater resistance to a variant of M. incognita race 3 than plants with Rk1 or Rk2 alone. Entries with Rk1 alone were successful in reducing root galling and nematode reproduction compared to the susceptible control. Entry T-15-1-1 did not reduce galling compared to the susceptible control but often suppressed reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号