首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Creer S  Sinniger F 《Molecular ecology》2012,21(5):1033-1035
Deep sea environments cover more than 65% of the earth’s surface and fulfil a range of ecosystem functions, yet they are also amongst the least known habitats on earth. Whilst the discovery of key geological processes, combined with technological developments, has focused interest onto geologically active areas such as hydrothermal vents, most abyssal biodiversity remains to be discovered ( Danovaro et al. 2010 ). However, as for terrestrial reservoirs of biodiversity, the world’s largest biome is under threat from anthropogenic activities ranging from environmental change to the exploitation of minerals and rare‐earth elements ( Kato et al. 2011 ). It is therefore important to understand the magnitude, nature and composition of deep sea biological communities to inform us of levels of local adaptation, functionality and resilience with respect to future environmental perturbation. In this issue of Molecular Ecology, Bik et al. utilize 454 Roche metagenetic environmental sequencing to assess microbial metazoan community composition and phylogenetic identity across deep sea depth gradients and between ocean basins. The analyses suggest that although the majority of microbial eukaryotic taxa are regionally restricted, a small percentage might maintain cosmopolitan deep sea distributions, and an even smaller fraction appear to be eurybathic (live across depth gradients).  相似文献   

2.
Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%–86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.  相似文献   

3.
In all three branches of life, some organisms incorporate the rare amino acid selenocysteine. Selenoproteins are relevant to the controversy over the metabolic features of the archaeal ancestor of eukaryotes because among archaea, several known selenoproteins are involved in methanogenesis and autotrophic growth. Although the eukaryotic selenocysteine-specific translation apparatus and at least one selenoprotein appear to be of archaeal origin, selenoproteins have not been identified among sulfur-metabolizing crenarchaeotes. In this regard, both the phylogeny and function of archaeal selenoproteins are consistent with the argument that the archaeal ancestor was a methanogen. Selenium, however, is abundant in sulfur-rich environments, and some anaerobic bacteria reduce sulfur and have selenoproteins similar to those in archaea. As additional archaeal sequence data becomes available, it will be important to determine whether selenoproteins are present in nonmethanogenic archaea, especially the sulfur-metabolizing crenarchaeotes.  相似文献   

4.
5.
Yale's Microbial Diversity Institute (MDI) comprises scientists who seek to understand the largely unknown microbial world. In the first MDI symposium at Yale's West Campus in October 2010, four speakers discussed their research in diverse fields within the microbial sciences. The highlights of the symposium are presented here along with an outlook on the future of the MDI.  相似文献   

6.
Coastal microbial mats are small-scale and largely closed ecosystems in which a plethora of different functional groups of microorganisms are responsible for the biogeochemical cycling of the elements. Coastal microbial mats play an important role in coastal protection and morphodynamics through stabilization of the sediments and by initiating the development of salt-marshes. Little is known about the bacterial and especially archaeal diversity and how it contributes to the ecological functioning of coastal microbial mats. Here, we analyzed three different types of coastal microbial mats that are located along a tidal gradient and can be characterized as marine (ST2), brackish (ST3) and freshwater (ST3) systems. The mats were sampled during three different seasons and subjected to massive parallel tag sequencing of the V6 region of the 16S rRNA genes of Bacteria and Archaea. Sequence analysis revealed that the mats are among the most diverse marine ecosystems studied so far and consist of several novel taxonomic levels ranging from classes to species. The diversity between the different mat types was far more pronounced than the changes between the different seasons at one location. The archaeal community for these mats have not been studied before and revealed a strong reaction on a short period of draught during summer resulting in a massive increase in halobacterial sequences, whereas the bacterial community was barely affected. We concluded that the community composition and the microbial diversity were intrinsic of the mat type and depend on the location along the tidal gradient indicating a relation with salinity.  相似文献   

7.
8.
Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook ‘three domains’ tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.  相似文献   

9.
Beneath Australia''s large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as ‘slime curtains'' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.  相似文献   

10.
Evidence that the root of the tree of life is not within the Archaea   总被引:2,自引:0,他引:2  
The Archaea occupy uncommon and extreme habitats around the world. They manufacture unusual compounds, utilize novel metabolic pathways, and contain many unique genes. Many suspect, due to their novel properties, that the root of the tree of life may be within the Archaea, although there is little direct evidence for this root. Here, using gene insertions and deletions found within protein synthesis factors present in all prokaryotes and eukaryotes, we present statistically significant evidence that the root of life is outside the Archaea.  相似文献   

11.
海洋古菌多样性研究进展   总被引:4,自引:0,他引:4  
海洋古菌是海洋微生物中的一个大的类群,然而绝大多数的古菌不能分离培养.近年来分子生物学的方法广泛地应用于微生物多样性的研究中,研究发现,海洋古菌广泛地生活在各类海域环境中,而不仅仅是生活在极端的环境中.海洋古菌为海洋生态系统中主要的原核细胞成分,在海洋生态系统中的物质与能量循环中扮演着重要角色.主要阐述了生活在海洋不同环境中海洋古菌的多样性,有海洋浮游古菌的多样性、海底环境及海洋沉积物中古菌的多样性、附着或寄共生古菌多样性等的研究状况,以及研究海洋古菌多样性的分子生物学的主要方法.  相似文献   

12.
13.
真核生物系统发育和多样性概观   总被引:1,自引:0,他引:1  
Our understanding of eukaryote biology is dominated by the study of land plants, animals and fungi. However, these are only three isolated fragments of the full diversity of extant eukaryotes. The majority of eukaryotes, in terms of major taxa and probably also sheer numbers of cells, consists of exclusively or predominantly unicellular lineages. A surprising number of these lineages are poorly characterized. Nonetheless, they are fundamental to our understanding of eukaryote biology and the underlying forces that shaped it. This article consists of an overview of the current state of our understanding of the eukaryote tree. This includes the identity of the major groups of eukaryotes, some of their important, defining or simply interesting features and the proposed relationships of these groups to each other.  相似文献   

14.
A metagenomic approach was carried out in order to study the genetic pool of a hypersaline microbial mat, paying more attention to the archaeal community and, specifically, to the putatively methanogenic members. The main aim of the work was to expand the knowledge of a likely ecologically important archaeal lineage, candidate division MSBL1, which is probably involved in methanogenesis at very high salinities.  相似文献   

15.
16.
This report details the outcome of the 13(th) Meeting of the Genomic Standards Consortium. The three-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5-7, 2012, and was hosted by the Beijing Genomics Institute. The meeting, titled From Genomes to Interactions to Communities to Models, highlighted the role of data standards associated with genomic, metagenomic, and amplicon sequence data and the contextual information associated with the sample. To this end the meeting focused on genomic projects for animals, plants, fungi, and viruses; metagenomic studies in host-microbe interactions; and the dynamics of microbial communities. In addition, the meeting hosted a Genomic Observatories Network session, a Genomic Standards Consortium biodiversity working group session, and a Microbiology of the Built Environment session sponsored by the Alfred P. Sloan Foundation.  相似文献   

17.
Actinobacteria within the acI lineage are often numerically dominating in freshwater ecosystems, where they can account for >50% of total bacteria in the surface water. However, they remain uncultured to date. We thus set out to use single-cell genomics to gain insights into their genetic make-up, with the aim of learning about their physiology and ecological niche. A representative from the highly abundant acI-B1 group was selected for shotgun genomic sequencing. We obtained a draft genomic sequence in 75 larger contigs (sum=1.16 Mb), with an unusually low genomic G+C mol% (∼42%). Actinobacteria core gene analysis suggests an almost complete genome recovery. We found that the acI-B1 cell had a small genome, with a rather low percentage of genes having no predicted functions (∼15%) as compared with other cultured and genome-sequenced microbial species. Our metabolic reconstruction hints at a facultative aerobe microorganism with many transporters and enzymes for pentoses utilization (for example, xylose). We also found an actinorhodopsin gene that may contribute to energy conservation under unfavorable conditions. This project reveals the metabolic potential of a member of the global abundant freshwater Actinobacteria.  相似文献   

18.
The diversity and structure of the archaeal community in the effluent leachate from a full-scale recirculating landfill was characterized by direct 16S rRNA gene (16S rDNA) retrieval. Total-community DNA was extracted from the microbial assemblages in the landfill leachate, and archaeal 16S rDNAs were amplified with a universally conserved primer and an Archaea-specific primer. The amplification product was then used to construct a 16S rDNA clone library, and 70 randomly selected archaeal clones in the library were grouped by restriction fragment length polymorphism (RFLP) analysis. Sequencing and phylogenetic analysis of representatives from each unique RFLP type showed that the archaeal library was dominated by methanogen-like rDNAs. Represented in the kingdom of Euryarchaeota were phylotypes highly similar to the methanogenic genera Methanoculleus, Methanosarcina, Methanocorpusculum, Methanospirillum and Methanogenium, where the clone distribution was 48, 11, 3, 1 and 1, respectively. No sequences related to known Methanosaeta spp. were retrieved. Four rDNA clones were not affiliated with the known methanogenic Archaea, but instead, they were clustered with the uncultured archaeal sequences recently recovered from anaerobic habitats. Two chimeric sequences were identified among the clones analyzed.  相似文献   

19.
Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, α and β. Although these subunits are highly homologous in sequence, the homo-oligomer of the β-subunit is more thermostable than that of the α-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the β-subunit were more resistant to thermal dissociation than the mutants with that of the α-subunit. Thermostability of a β-subunit mutant whose C-terminal 22 residues were replaced with those of the α-subunit decreased to the comparable level of that of the α-subunit homo-oligomer. These results indicate that the difference in thermostability between α- and β-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.Takao Yoshida, Taro Kanzaki, Ryo Iizuka and Toshihiro Komada contributed equally to this paper.  相似文献   

20.
In recent developments in chemistry and genetic engineering, the humble researcher dealing with the origin of life finds her(him)self in a grey area of tackling something that even does not yet have a clear definition agreed upon. A series of chemical steps is described to be considered as the life-nonlife transition, if one adheres to the minimalistic definition: life is self-reproduction with variations. The fully artificial RNA system chosen for the exploration corresponds sequence-wise to the reconstructed initial triplet repeats, presumably corresponding to the earliest protein-coding molecules. The demonstrated occurrence of the mismatches (variations) in otherwise complementary syntheses ("self-reproduction"), in this RNA system, opens an experimental and conceptual perspective to explore the origin of life (and its definition), on the apparent edge of the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号