首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.  相似文献   

2.
3.
Primary neurogenesis is a dynamic and complex process during embryonic development that sets up the initial layout of the central nervous system. During this process, a portion of neural stem cells undergo differentiation and give rise to the first populations of differentiated primary neurons within the nascent central nervous system. Several vertebrate model organisms have been used to explore the mechanisms of neural cell fate specification, patterning, and differentiation. Among these is the African clawed frog, Xenopus, which provides a powerful system for investigating the molecular and cellular mechanisms responsible for primary neurogenesis due to its rapid and accessible development and ease of embryological and molecular manipulations. Here, we present a convenient and rapid method to observe the different populations of neuronal cells within Xenopus central nervous system. Using antibody staining and immunofluorescence on sections of Xenopus embryos, we are able to observe the locations of neural stem cells and differentiated primary neurons during primary neurogenesis.  相似文献   

4.
In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.  相似文献   

5.
6.
Neural crest-derived pigment cell development has been used extensively to study cell fate specification, migration, proliferation, survival and differentiation. Many of the genes and regulatory mechanisms required for pigment cell development are conserved across vertebrates. The zebrafish mutant colgate (col)/histone deacetylase1 (hdac1) has reduced numbers, delayed differentiation and decreased migration of neural crest-derived melanophores and their precursors. In hdac1col mutants normal numbers of premigratory neural crest cells are induced. Later, while there is only a slight reduction in the number of neural crest cells in hdac1col mutants, there is a severe reduction in the number of mitfa-positive melanoblasts suggesting that hdac1 is required for melanoblast specification. Concomitantly, there is a significant increase in and prolonged expression of foxd3 in neural crest cells in hdac1col mutants. We found that partially reducing Foxd3 expression in hdac1col mutants rescues mitfa expression and the melanophore defects in hdac1col mutants. Furthermore, we demonstrate the ability of Foxd3 to physically interact at the mitfa promoter. Because mitfa is required for melanoblast specification and development, our results suggest that hdac1 is normally required to suppress neural crest foxd3 expression thus de-repressing mitfa resulting in melanogenesis by a subset of neural crest-derived cells.  相似文献   

7.
Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms1-3. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson''s disease, Schizophrenia, depression, and dementia1-5. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders.Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs6,7. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos8,9. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points10-13. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes14. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain development. Modification of the experimental system may extend the assay to other parts of the nervous system for performing fate mapping analysis and for investigating the regulation of gene expression.  相似文献   

8.
9.
10.
The Pax3/7 gene family has a fundamental and conserved role during neural crest formation. In people, PAX3 mutation causes Waardenburg syndrome, and murine Pax3 is essential for pigment formation. However, it is unclear exactly how Pax3 functions within the neural crest. Here we show that pax3 is expressed before other pax3/7 members, including duplicated pax3b, pax7 and pax7b genes, early in zebrafish neural crest development. Knockdown of Pax3 protein by antisense morpholino oligonucleotides results in defective fate specification of xanthophores, with complete ablation in the trunk. Other pigment lineages are specified and differentiate. As a consequence of xanthophore loss, expression of pax7, a marker of the xanthophore lineage, is reduced in neural crest. Morpholino knockdown of Pax7 protein shows that Pax7 itself is dispensable for xanthophore fate specification, although yellow pigmentation is reduced. Loss of xanthophores after reduction of Pax3 correlates with a delay in melanoblast differentiation followed by significant increase in melanophores, suggestive of a Pax3-driven fate switch within a chromatophore precursor or stem cell. Analysis of other neural crest derivatives reveals that, in the absence of Pax3, the enteric nervous system is ablated from its inception. Therefore, Pax3 in zebrafish is required for specification of two specific lineages of neural crest, xanthophores and enteric neurons.  相似文献   

11.
12.
The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool to illuminate their development, regulation and function. We have identified by expression profiling a putative non-coding RNA, Rmst, that exhibits prominent expression in the midbrain floor plate region, the isthmus and the roof plate of the anterior neural tube. At the developmental stage when the ventral dopaminergic neuron territory is being established, Rmst expression appears to be restricted to the presumptive dopaminergic neurons of the ventral tegmental area that lies close to the ventral midline. Thus this study presents Rmst as a novel marker for the developing dopaminergic neurons in the mesencephalic floor plate as well as a marker for the dorsal midline cells of the anterior neural tube and the isthmic organizer.  相似文献   

13.
A major challenge in neurobiology is to understand the molecular underpinnings of neural circuitry that govern a specific behavior. Once the specific molecular mechanisms are identified, new therapeutic strategies can be developed to treat abnormalities in specific behaviors caused by degenerative diseases or aging of the nervous system. The marine snail Aplysia californica is well suited for the investigations of cellular and molecular basis of behavior because neural circuitry underlying a specific behavior could be easily determined and the individual components of the circuitry could be easily manipulated. These advantages of Aplysia have led to several fundamental discoveries of neurobiology of learning and memory. Here we describe a preparation of the Aplysia nervous system for the electrophysiological and molecular analyses of individual neurons. Briefly, ganglion dissected from the nervous system is exposed to protease to remove the ganglion sheath such that neurons are exposed but retain neuronal activity as in the intact animal. This preparation is used to carry out electrophysiological measurements of single or multiple neurons. Importantly, following the recording using a simple methodology, the neurons could be isolated directly from the ganglia for gene expression analysis. These protocols were used to carry out simultaneous electrophysiological recordings from L7 and R15 neurons, study their response to acetylcholine and quantitating expression of CREB1 gene in isolated single L7, L11, R15, and R2 neurons of Aplysia.  相似文献   

14.
15.
16.
Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other repellents, as well as bitter quinine, through direct electrophysiological investigation. These gustatory receptor neuron responses prompted our sequencing of total mRNA from both male and female labella and tarsi samples to elucidate the putative chemoreception genes expressed in these contact chemoreception tissues. Samples of tarsi were divided into pro-, meso- and metathoracic subtypes for both sexes. We then validated our dataset by conducting qRT-PCR on the same tissue samples and used statistical methods to compare results between the two methods. Studies addressing molecular function may now target specific genes to determine those involved in repellent perception by mosquitoes. These receptor pathways may be used to screen novel repellents towards disruption of host-seeking behavior to curb the spread of harmful viruses.  相似文献   

17.
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.  相似文献   

18.
19.
20.
The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier regulatory events influence post-mitotic cell fate decisions is beginning to be understood in the Drosophila NB 5-6 lineage. However, it remains unknown to what extent these events operate in other lineages. To better understand this issue, we have used a very highly specific marker that identifies a small subset of abdominal cells expressing the Drosophila neuropeptide Capa: the ABCA neurons. Our data support the birth of the ABCA neurons from NB 5-3 in a cas temporal window in the abdominal segments A2-A4. Moreover, we show that the ABCA neuron has an ABCA-sibling cell which dies by apoptosis. Surprisingly, both cells are also generated in the abdominal segments A5-A7, although they undergo apoptosis before expressing Capa. In addition, we have performed a targeted genetic screen to identify players involved in ABCA specification. We have found that the ABCA fate requires zfh2, grain, Grunge and hedgehog genes. Finally, we show that the NB 5-3 generates other subtype of Capa-expressing cells (SECAs) in the third suboesophageal segment, which are born during a pdm/cas temporal window, and have different genetic requirements for their specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号