首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an overview of the full repertoire of intertwined associations in homooligomeric proteins. This overview summarizes recent findings on the different categories of intertwined associations in known protein structures, their assembly modes, the properties of their interfaces, and their structural plasticity. Furthermore, the current body of knowledge on the so-called three-dimensional domain-swapped systems is reexamined in the context of the wider landscape of intertwined homooligomers, with a particular focus on the mechanistic aspects that underpin intertwined self-association processes in proteins. Insights gained from this integrated overview into the physical and biological roles of intertwining are highlighted.  相似文献   

2.
3.
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.  相似文献   

4.
5.
Plastids are cellular organelles which originated when a photosynthetic prokaryote was engulfed by the eukaryotic ancestor of green and red algae and land plants. Plastids have diversified in plants from their original function as chloroplasts to fulfil a variety of other roles in metabolite biosynthesis and in storage, or purely to facilitate their own transmission, according to the cell type that harbours them. Therefore cellular development and plastid biogenesis pathways must be closely intertwined. Cell biological, biochemical, and genetic approaches have generated a large body of knowledge on a variety of plastid biogenesis processes. A brief overview of the components and functions of the plastid genetic machinery, the plastid division apparatus, and protein import to and targeting inside the organelle is presented here. However, key areas in which our knowledge is still surprisingly limited remain, and these are also discussed. Chloroplast-defective mutants suggest that a substantial number of important plastid biogenesis proteins are still unknown. Very little is known about how different plastid types differentiate, or about what mechanisms co-ordinate cell growth with plastid growth and division, in order to achieve what is, in photosynthetic cells, a largely constant cellular plastid complement. Further, it seems likely that major, separate plastid and chloroplast 'master switches' exist, as indicated by the co-ordinated gene expression of plastid or chloroplast-specific proteins. Recent insights into each of these developing areas are reviewed. Ultimately, this information should allow us to gain a systems-level understanding of the plastid-related elements of the networks of plant cellular development.  相似文献   

6.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors  相似文献   

7.
Arthropods can produce a wide range of antifungal compounds, including specialist proteins, cuticular products, venoms and haemolymphs. In spite of this, many arthropod taxa, particularly eusocial insects, make use of additional antifungal compounds derived from their mutualistic association with microbes. Because multiple taxa have evolved such mutualisms, it must be assumed that, under certain ecological circumstances, natural selection has favoured them over those relying upon endogenous antifungal compound production. Further, such associations have been shown to persist versus specific pathogenic fungal antagonists for more than 50 million years, suggesting that compounds employed have retained efficacy in spite of the pathogens'' capacity to develop resistance. We provide a brief overview of antifungal compounds in the arthropods’ armoury, proposing a conceptual model to suggest why their use remains so successful. Fundamental concepts embedded within such a model may suggest strategies by which to reduce the rise of antifungal resistance within the clinical milieu.  相似文献   

8.
Various post‐translational modifications (PTMs) fine‐tune the functions of almost all eukaryotic proteins, and co‐regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co‐evolution within proteins based on the co‐occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co‐evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane‐associated proteins and in the context of particular protein domains and short‐linear motifs. The global network of co‐evolving PTM types implies a complex and intertwined post‐translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.  相似文献   

9.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.  相似文献   

10.
Plasma membrane-cytoskeleton associations involving four membrane proteins (A5, H58, H36, and I20) were studied in developing L8E63 rat skeletal muscle cells using immunofluorescence microscopy and photometry on the basis of three criteria: Triton-insolubility, colocalization with cytoskeletal components, and sensitivity to cytoskeleton-directed drugs. The results presented demonstrate that there are developmental stage-specific associations between membrane proteins and the cytoskeleton during skeletal myogenesis. Several inconsistencies were found with traditional expectations of membrane-cytoskeleton associations. For example, although A5 is Triton-insoluble and sensitive to cytochalasin, its distribution generally does not correspond with any known cytoskeletal structure. Furthermore, the topography of A5 is dependent on the integrity of the plasma membrane. H36 and I20 are completely soluble in Triton and therefore by accepted definitions would not be expected to be associated with any cytoskeletal component. Yet H36 and actin codisrupt in the presence of cytochalasin, while I20, whose distribution does not correspond with microtubules, is uniquely sensitive to their disruption. These results demonstrate that (i) neither Triton-solubility nor colocalization alone predicts all membrane-cytoskeleton associations; some associations between the membrane and cytoskeleton are unstable in nonionic detergent; (ii) the native distribution of proteins in the membrane may not reflect their cytoskeletal associations; and (iii) the topography of some membrane proteins with no apparent association with the cytoskeleton may be greatly influenced by the cell cytoskeleton.  相似文献   

11.
The human protein interaction network will offer global insights into the molecular organization of cells and provide a framework for modeling human disease, but the network's large scale demands new approaches. We report a set of 7000 physical associations among human proteins inferred from indirect evidence: the comparison of human mRNA co‐expression patterns with those of orthologous genes in five other eukaryotes, which we demonstrate identifies proteins in the same physical complexes. To evaluate the accuracy of the predicted physical associations, we apply quantitative mass spectrometry shotgun proteomics to measure elution profiles of 3013 human proteins during native biochemical fractionation, demonstrating systematically that putative interaction partners tend to co‐sediment. We further validate uncharacterized proteins implicated by the associations in ribosome biogenesis, including WBSCR20C, associated with Williams–Beuren syndrome. This meta‐analysis therefore exploits non‐protein‐based data, but successfully predicts associations, including 5589 novel human physical protein associations, with measured accuracies of 54±10%, comparable to direct large‐scale interaction assays. The new associations’ derivation from conserved in vivo phenomena argues strongly for their biological relevance.  相似文献   

12.
Integral membrane proteins are involved in a wide range of essential biological functions and the determination of their three-dimensional structures plays a central role in understanding their function. This review focuses on the structures of one class of integral membrane proteins: the functionally diverse all-alpha type membrane proteins. It gives an overview of all the structures determined by X-ray crystallography, describing each system and structure in turn. It shows that the structures of all-alpha type membrane proteins have made valuable contributions to understanding structure–function relationships in membrane proteins. These range from the first insights into the function of exciting individual proteins to an in-depth knowledge of protein function from entire biological systems.  相似文献   

13.
14.
The presence of a single lac repressor binding sequence on plasmid DNAs is shown to mediate the formation of interlocked dimers in E. coli. The presence of both homo- and hetero-interlocked dimers suggests that the lac repressor complex can bring together randomly two plasmid DNA molecules to facilitate gyrase-mediated interlocking. The exclusive formation of multiply intertwined dimers also suggest that the lac repressor complex may bind simultaneously to a pair of replicated daughter plasmid molecules prior to their segregation. The formation of interlocked plasmid DNAs can be indicative of interaction between two DNA bound proteins in vivo.  相似文献   

15.
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.  相似文献   

16.
17.
Abstract

Human tissue has been stored and used for research on a regular basis for more than 80 years. During the 1990s, collections of human tissue suddenly became framed as ethical problems in a process reflecting developments in genetic research intertwined with developments in patient rights and steps towards increased commercialization of research. This review describes the process of framing tissue storage as an ethical problem and the solutions proposed in the process. It gives an overview of the academic debate and relates this debate to empirical studies of donor attitudes and interests. It points to the clear discrepancy between the concerns of donors, legislators and ethicists. The academic debate and legislatory action tend to focus on informed consent, and most of the concerns that donors have remain unattended to.  相似文献   

18.
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.  相似文献   

19.
Two-hybrid technologies in proteomics research   总被引:5,自引:0,他引:5  
Given that protein-protein interactions (PPIs) regulate nearly every living process; the exploration of global and pathway-specific protein interaction networks is expected to have major implications in the understanding of diseases and for drug discovery. Consequently, the development and application of methodologies that address physical associations among proteins is of major importance in today's proteomics research. The most widely and successfully used methodology to assess PPIs is the yeast two-hybrid system (YTH). Here we present an overview on the current applications of YTH and variant technologies in yeast and mammalian systems. Two-hybrid-based methods will not only continue to have a dominant role in the assessment of protein interactomes but will also become important in the development of novel compounds that target protein interaction interfaces for therapeutic intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号