首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

2.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

3.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

4.
5.
A new isoquinoline, 1,5‐dihydroxy‐4‐methoxyisoquinoline ( 1 ), was obtained from Scolopendra subspinipes mutilans. Compound 1 showed moderate cytotoxicity on tumour cells with IC50 values ranging from 13 to 26 μm against five esophageal squamous cancer cells whereas low cytotoxicity against normal human esophageal epithelial cells. Isoquinoline ring oxidized at C(1), C(4), and C(5) can enhance its cytotoxicity. In addition, compound 1 showed potent inhibitory effect (inhibition rate > 50% at 13 μm ) on cell migration in human umbilical vein endothelial cells. This article mainly studies the structure and activity of 1 , and more modification of 1 as a potential anticancer agent.  相似文献   

6.
7.
8.
Apocarotenoids are widely distributed among living organisms (bacteria, fungi, algae, plants and even animals) and have been associated with several signaling functions. These compounds are generated by the activity of carotenoid cleavage dioxygenases (CCDs), whose diversity greatly contributes to the large number of apocarotenoids that have been described so far. It is nevertheless expected that a considerable diversity of these molecules is yet to be discovered. In this work, we describe the isolation and structural elucidation of the apocarotenoid 4‐oxo‐β‐apo‐13‐carotenone from the cultured freshwater cyanobacterium Anabaena cylindrica PCC 7122, corresponding to the first report of this compound from natural sources.  相似文献   

9.
Flavonol 3‐O‐diglucosides with a 1→2 inter‐glycosidic linkage are representative pollen‐specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild‐type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3‐O‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild‐type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP‐glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen‐specific flavonol structure. Kaempferol and quercetin 3‐O‐glucosyl‐(1→2)‐glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild‐type plants. Recombinant UGT79B6 protein converted kaempferol 3‐O‐glucoside to kaempferol 3‐O‐glucosyl‐(1→2)‐glucoside. UGT79B6 recognized 3‐O‐glucosylated/galactosylated anthocyanins/flavonols but not 3,5‐ or 3,7‐diglycosylated flavonoids, and prefers UDP‐glucose, indicating that UGT79B6 encodes flavonoid 3‐O‐glucoside:2″‐O‐glucosyltransferase. A UGT79B6‐GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.  相似文献   

10.
The non‐metabolizable fluorescent glucose analogue 6‐(N‐(7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)amino)‐2‐deoxyglucose (6‐NBDG) is increasingly used to study cellular transport of glucose. Intracellular accumulation of exogenously applied 6‐NBDG is assumed to reflect concurrent gradient‐driven glucose uptake by glucose transporters (GLUTs). Here, theoretical considerations are provided that put this assumption into question. In particular, depending on the microscopic parameters of the carrier proteins, theory proves that changes in glucose transport can be accompanied by opposite changes in flow of 6‐NBDG. Simulations were carried out applying the symmetric four‐state carrier model on the GLUT1 isoform, which is the only isoform whose kinetic parameters are presently available. Results show that cellular 6‐NBDG uptake decreases with increasing rate of glucose utilization under core‐model conditions, supported by literature, namely where the transporter is assumed to work in regime of slow reorientation of the free‐carrier compared with the ligand–carrier complex. To observe an increase of 6‐NBDG uptake with increasing rate of glucose utilization, and thus interpret 6‐NBDG increase as surrogate of glucose uptake, the transporter must be assumed to operate in regime of slow ligand–carrier binding, a condition that is currently not supported by literature. Our findings suggest that the interpretation of data obtained with NBDG derivatives is presently ambiguous and should be cautious because the underlying transport kinetics are not adequately established.  相似文献   

11.
12.
13.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

14.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

15.
Mycophenolic acid (MPA) is a potent natural product inhibitor of fungal and other eukaryotic inosine 5′‐monophosphate dehydrogenases (IMPDHs) originally isolated from spoiled corn silage. MPA is produced by the filamentous fungi Penicillium brevicompactum, which contains two IMPDHs, PbIMPDHA and PbIMPDHB, both of which are MPA‐resistant. The MPA binding sites of these enzymes are identical to MPA‐sensitive IMPDHs, so the structural determinants of resistance are unknown. Here we show that a single residue, Ser267, accounts for the MPA resistance of PbIMPDHA. Substitution of Ser267 with Ala, the residue most commonly found in this position in eukaryotic IMPDHs, makes PbIMPDHA sensitive to MPA. Conversely, Aspergillus nidulans IMPDH becomes MPA‐resistant when the analogous Ala residue is substituted with Ser. These substitutions have little effect on the catalytic cycles of either enzyme, suggesting the fitness costs are negligible despite the strong conservation of Ala at this position. Intriguingly, while only 1% of fungal IMPDHs contain Ser or Thr at position 267, these residues are found in the IMPDHs from several Aspergillus species that grow at the low temperatures also favored by Penicillium. Perhaps Ser/Thr267 is an evolutionary signature of MPA exposure.  相似文献   

16.
Growth hormone releasing hormone (GHRH) regulates the secretion of growth hormone (GH) in the pituitary gland. A 66‐bp deletion (c.‐923_‐858del) was detected in the 5′‐flanking sequence of the largemouth bass (Micropterus salmoides) GHRH gene. In two cultured random populations of adult individuals (A: = 170 and B: = 150), the genotype ratios of +/+:+/? were 2.5:1 and 2.8:1 respectively. Only one ?/? fish was detected. A Largemouth bass family was constructed with two heterozygous individuals (+/?) as parents. The genotype ratio of +/+:+/?:?/? in the filial generation embryos was 1:1.6:0.1 at the neurula and 1:2:0 at hatched larvae stages. This indicated that the 66‐bp deletion was a recessive lethal site and that homozygous individuals (?/?) died off in embryonic development. The growth traits (body weight, body length and body depth) were measured, and the GHRH mRNA expression levels in brain tissue were detected using real‐time PCR. The effects of genotype (+/?) on growth traits and GHRH mRNA expression were not significant. Although the cause of death was not clear, the results hint that the 66‐bp deletion site in GHRH 5′‐flanking sequence significantly affects the livability in largemouth bass embryonic development.  相似文献   

17.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

18.
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β‐catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage‐stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA‐injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8‐KDEL) could dorsalize Xenopus embryos. Finally, Wnt8‐induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号