共查询到20条相似文献,搜索用时 0 毫秒
1.
The emerging field of mass spectrometry-based chemical proteomics provides a powerful instrument in the target discovery of bioactive small-molecules, such as drugs or natural products. The identification of their macromolecular targets is required for a comprehensive understanding of their bio-pharmacological role and for unraveling their mechanism of action. We report the application of a chemical proteomics approach to the analysis of the cellular interactome of the marine metabolite bolinaquinone (BLQ). BLQ was linked to an opportune α,ω-diamino polyethylene glycol chain and then immobilized on a matrix support. The modified beads were then used as a bait for fishing the potential partners of BLQ in a THP-1 macrophage cell lysate. Surprisingly, we identified clathrin, a protein involved in the cell internalization of proteins, viruses and other biologically relevant macromolecules, as a specific and major BLQ partner. In addition, we verified the biochemical role of BLQ testing its ability to inhibit the clathrin-mediated endocytosis of albumin. This finding indicates BLQ as a new biotechnological tool for cell endocytosis studies and paves the way to further investigation on its potential role in modulating internalization process. 相似文献
2.
The exocyst is an octameric complex mediating vesicle targeting and tethering at the plasma membrane for exocytosis. The role of exocyst in nervous system is unclear. In this issue of Neuron, Murthy et al. provide important insights: defects in the exocyst inhibit neurite outgrowth and neuromuscular junction formation; however, synaptic transmission persists. 相似文献
3.
Calloni G Chen T Schermann SM Chang HC Genevaux P Agostini F Tartaglia GG Hayer-Hartl M Hartl FU 《Cell reports》2012,1(3):251-264
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins. 相似文献
4.
Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder 总被引:1,自引:0,他引:1
The induction of the hydroosmotic response in the toad urinary bladder is considered to be associated with membrane addition mediated by exocytosis at the affected luminal membrane and reversed by endocytic retrieval at that surface. The permeability, exocytosis and endocytosis are initiated by antidiuretic hormone (ADH) receptor interaction on the basolateral membrane. In other hormone responsive systems, phorbol ester (phorbol myristate acetate, PMA), a tumor promoter, has been implicated in the regulation of various transport processes through the activation of protein kinase C and cytoskeletal protein phosphorylation. We found that addition of 10(-6) M PMA to the mucosa induces an hydroosmotic response which is gradual and which reaches a maximum within 60 min, equal to about 1/3 the maximal ADH response. Morphologically, PMA causes rapid exocytosis of the granules, endocytosis of horseradish peroxidase from the mucosal medium into tubules and multivesicular bodies and elongation of apical microvilli. Controls treated with mucosal 0.1% dimethylsulfoxide (DMSO) or an inactive PMA isomer on the mucosal surface, or PMA on the serosal surface lack the hydroosmotic, exocytic, endocytic and cytoskeletal changes. Addition of serosal ADH to PMA-treated bladders results in a precocious hydroosmotic and exocytic ADH response, but a lowering of the maximal response. Also pretreatment of bladders with PMA prevented the ADH-induced increase in transepithelial potential difference. Thus, apical events mediating the PMA hydroosmotic response are correlated with exo- and endocytosis and elongation of apical microvilli. 相似文献
5.
Matthias Husmann Erik Beckmann Nicole Kloft Wiesia Bobkiewicz Hagan Bayley 《FEBS letters》2009,583(2):337-80
Staphylococcus aureus α-toxin is the archetype of bacterial pore forming toxins and a key virulence factor secreted by the majority of clinical isolates of S. aureus. Toxin monomers bind to target cells and oligomerize to form small β-barrel pores in the plasma membrane. Many nucleated cells are able to repair a limited number of lesions by unknown, calcium-independent mechanisms. Here we show that cells can internalize α-toxin, that uptake is essential for cellular survival, and that pore-complexes are not proteolytically degraded, but returned to the extracellular milieu in the context of exosome-like structures, which we term toxosomes. 相似文献
6.
7.
Mechanisms that ensure robust long-term performance of synaptic transmission over a wide range of activity are crucial for the integrity of neuronal networks, for processing sensory information and for the ability to learn and store memories. Recent experiments have revealed that such robust performance requires a tight coupling between exocytic vesicle fusion at defined release sites and endocytic retrieval of synaptic vesicle membranes. Distinct presynaptic scaffolding proteins are essential for fulfilling this requirement, providing either ultrastructural coordination or acting as signalling hubs. 相似文献
8.
Morgera F Sallah MR Dubuke ML Gandhi P Brewer DN Carr CM Munson M 《Molecular biology of the cell》2012,23(2):337-346
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function-it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6-Sec1 interaction is exclusive of Sec6-Sec9 but compatible with Sec6-exocyst assembly. In contrast, the Sec6-exocyst interaction is incompatible with Sec6-Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6-exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion. 相似文献
9.
Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis
下载免费PDF全文

Zhang X Wang P Gangar A Zhang J Brennwald P TerBush D Guo W 《The Journal of cell biology》2005,170(2):273-283
The tumor suppressor lethal giant larvae (Lgl) plays a critical role in epithelial cell polarization. However, the molecular mechanism by which Lgl carries out its functions is unclear. In this study, we report that the yeast Lgl proteins Sro7p and Sro77p directly interact with Exo84p, which is a component of the exocyst complex that is essential for targeting vesicles to specific sites of the plasma membrane for exocytosis, and that this interaction is important for post-Golgi secretion. Genetic analyses demonstrate a molecular pathway from Rab and Rho GTPases through the exocyst and Lgl to SNAREs, which mediate membrane fusion. We also found that overexpression of Lgl and t-SNARE proteins not only improves exocytosis but also rescues polarity defects in exocyst mutants. We propose that, although Lgl is broadly distributed in the cells, its localized interaction with the exocyst and kinetic activation are important for the establishment and reenforcement of cell polarity. 相似文献
10.
Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae
下载免费PDF全文

Small peptides of two to six residues serve as important sources of amino acids and nitrogen required for growth by a variety of organisms. In the yeast Saccharomyces cerevisiae, the membrane transport protein Ptr2p, encoded by PTR2, mediates the uptake of di/tripeptides. To identify genes involved in regulation of dipeptide utilization, we performed a systematic, functional examination of this process in a haploid, nonessential, single-gene deletion mutant library. We have identified 103 candidate genes: 57 genes whose deletion decreased dipeptide utilization and 46 genes whose deletion enhanced dipeptide utilization. On the basis of Ptr2p-GFP expression studies, together with PTR2 expression analysis and dipeptide uptake assays, 42 genes were ascribed to the regulation of PTR2 expression, 37 genes were involved in Ptr2p localization, and 24 genes did not apparently affect Ptr2p-GFP expression or localization. The 103 genes regulating dipeptide utilization were distributed among most of the Gene Ontology functional categories, indicating a very wide regulatory network involved in transport and utilization of dipeptides in yeast. It is anticipated that further characterization of how these genes affect peptide utilization should add new insights into the global mechanisms of regulation of transport systems in general and peptide utilization in particular. 相似文献
11.
Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E. coli functions involved in retromobility of the L. lactis LtrB intron. Thirteen disruptions that reproducibly resulted in increased or decreased retrohoming levels into the E. coli chromosome were isolated. These functions were classified as factors involved in RNA processing, DNA replication, energy metabolism, and global regulation. Here we characterize a novel mutant in the rne promoter region, which regulates RNase E expression. Retrohoming and retrotransposition levels are elevated in the rneTn5 mutant. The stimulatory effect of the mutation on retromobility results from intron RNA accumulation in the RNase E mutant. These results suggest that RNase E, which is the central component of the RNA degradosome, could regulate retrohoming levels in response to cellular physiology. 相似文献
12.
高中生物必修本第1册第2章在讲到细胞膜的主要功能时,以小字的形式提到细胞的内吞作用和外排作用,表述较简单,读者不甚理解。其实这也是活细胞进行新陈代谢作用,不断地与外界环境交换物质,物质通过细胞膜进出细胞的方式之一。离子和小分子物质进出 相似文献
13.
Summary This study concerns the timing and magnitude of exocytosis and endocytosis in the granular cells of toad bladder during the hydroosmotic response to antidiuretic hormone. Granule exocytosis at the luminal cell surface is extensive within 5 min of the administration of a physiological dose of hormone. Hydroosmosis becomes detectable during this time period. The amount of membrane added to the luminal surface by exocytosis during 60 min of exposure to hormone can be of the same order of magnitude as the extent of the luminal plasma membrane. Endocytosis, demonstrated by peroxidase uptake from the luminal surface, becomes extensive during the period 15–45 min after hormone administration. Thus, maximal endocytic activity occurs later than the period of most extensive exocytosis and seems to correlate with the onset of the decline in water movement. The amount of membrane retrieved from the luminal surface by endocytosis during 60 min of stimulation is at least three quarters of that added by exocytosis. The bulk membrane movement in ADH stimulated preparations does not require the presence of an osmotic gradient. Colchicine inhibits the hydroosmotic response, the exocytosis of granules, and endocytosis at the luminal surface. These results strengthen our view that the bulk circulation of membrane at the cell surface, via exocytosis and endocytosis, is closely related to the permeability changes occuring at the surface. 相似文献
14.
Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex
下载免费PDF全文

Roumanie O Wu H Molk JN Rossi G Bloom K Brennwald P 《The Journal of cell biology》2005,170(4):583-594
Rho GTPases are important regulators of polarity in eukaryotic cells. In yeast they are involved in regulating the docking and fusion of secretory vesicles with the cell surface. Our analysis of a Rho3 mutant that is unable to interact with the Exo70 subunit of the exocyst reveals a normal polarization of the exocyst complex as well as other polarity markers. We also find that there is no redundancy between the Rho3-Exo70 and Rho1-Sec3 pathways in the localization of the exocyst. This suggests that Rho3 and Cdc42 act to polarize exocytosis by activating the exocytic machinery at the membrane without the need to first recruit it to sites of polarized growth. Consistent with this model, we find that the ability of Rho3 and Cdc42 to hydrolyze GTP is not required for their role in secretion. Moreover, our analysis of the Sec3 subunit of the exocyst suggests that polarization of the exocyst may be a consequence rather than a cause of polarized exocytosis. 相似文献
15.
16.
Krastev DB Slabicki M Paszkowski-Rogacz M Hubner NC Junqueira M Shevchenko A Mann M Neugebauer KM Buchholz F 《Nature cell biology》2011,13(7):809-818
TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes. 相似文献
17.
18.
Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse 总被引:24,自引:0,他引:24
Release of neurotransmitter at the inner hair cell (IHC) afferent synapse is a fundamental step in translating sound into auditory nerve excitation. To study the Ca2+ dependence of the underlying vesicle fusion and subsequent endocytosis, we combined Ca2+ uncaging with membrane capacitance measurements in mouse IHCs. Rapid elevations in [Ca2+]i above 8 microM caused a biphasic capacitance increase corresponding to the fusion of approximately 40,000 vesicles. The kinetics of exocytosis displayed a fifth-order Ca2+ dependence reaching maximal rates of >3 x 10(7) vesicle/s. Exocytosis was always followed by slow, compensatory endocytosis (tau congruent with 15 s). Higher [Ca2+]i increased the contribution of a faster mode of endocytosis with a Ca2+ independent time constant of approximately 300 ms. These properties provide for rapid and sustained transmitter release from this large presynaptic terminal. 相似文献
19.
20.
Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition. 相似文献