首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development.Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO) was investigated using confocal laser scanning microscopy.Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme.Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment.  相似文献   

2.
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Δyhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA). Δyhb1 strain of S. cerevisiae showed bright fluorescence under confocal microscope that proves NO or RNS accumulation is more in absence of flavohemoglobin. We further investigated PTN profile of both cytosol and mitochondria of Y190 and Δyhb1 cells of S. cerevisiae using two-dimensional (2D) gel electrophoresis followed by western blot analysis. Surprisingly, we observed many immunopositive spots both in cytosol and in mitochondria from Y190 and Δyhb1 using monoclonal anti-3-nitrotyrosine antibody indicating a basal level of NO or nitrite or peroxynitrite is produced in yeast system. To identify proteins nitrated in vivo we analyzed mitochondrial proteins from Y190 strains of S. cerevisiae. Among the eight identified proteins, two target mitochondrial proteins are aconitase and isocitrate dehydrogenase that are involved directly in the citric acid cycle. This investigation is the first comprehensive study to identify mitochondrial proteins nitrated in vivo.  相似文献   

3.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   

4.
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2S, we obtained a 50–75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2S, we observed that, while NADP-ME activity was inhibited by up to 29–32% using 2 and 5 mM Na2S as H2S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2S and NO partially modulate the NADPH-generating system.  相似文献   

5.
Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.  相似文献   

6.
Background and Aims Zinc (Zn) is an essential micronutrient naturally present in soils, but anthropogenic activities can lead to accumulation in the environment and resulting damage to plants. Heavy metals such as Zn can induce oxidative stress and the generation of reactive oxygen and nitrogen species (ROS and RNS), which can reduce growth and yield in crop plants. This study assesses the interplay of these two families of molecules in order to evaluate the responses in roots of two Brassica species under high concentrations of Zn.Methods Nine-day-old hydroponically grown Brassica juncea (Indian mustard) and B. napus (oilseed rape) seedlings were treated with ZnSO4 (0, 50, 150 and 300 µm) for 7 d. Stress intensity was assessed through analyses of cell wall damage and cell viability. Biochemical and cellular techniques were used to measure key components of the metabolism of ROS and RNS including lipid peroxidation, enzymatic antioxidants, protein nitration and content of superoxide radical (O2·), nitric oxide (NO) and peroxynitrite (ONOO).Key Results Analysis of morphological root damage and alterations of microelement homeostasis indicate that B. juncea is more tolerant to Zn stress than B. napus. ROS and RNS parameters suggest that the oxidative components are predominant compared with the nitrosative components in the root system of both species.Conclusions The results indicate a clear relationship between ROS and RNS metabolism as a mechanism of response against stress caused by an excess of Zn. The oxidative stress components seem to be more dominant than the elements of the nitrosative stress in the root system of these two Brassica species.  相似文献   

7.
Background and Aims Auxin is the main phytohormone controlling root development in plants. This study uses pharmacological and genetic approaches to examine the role of auxin and nitric oxide (NO) in the activation of NADPH-dependent thioredoxin reductase (NTR), and the effect that this activity has on root growth responses in Arabidopsis thaliana.Methods Arabidopsis seedlings were treated with auxin with or without the NTR inhibitors auranofin (ANF) and 1-chloro-2, 4-dinitrobenzene (DNCB). NTR activity, lateral root (LR) formation and S-nitrosothiol content were measured in roots. Protein S-nitrosylation was analysed by the biotin switch method in wild-type arabidopsis and in the double mutant ntra ntrb.Key Results The auxin-mediated induction of NTR activity is inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), suggesting that NO is downstream of auxin in this regulatory pathway. The NTR inhibitors ANF and DNCB prevent auxin-mediated activation of NTR and LR formation. Moreover, ANF and DNCB also inhibit auxin-induced DR5 : : GUS and BA3 : : GUS gene expression, suggesting that the auxin signalling pathway is compromised without full NTR activity. Treatment of roots with ANF and DNCB increases total nitrosothiols (SNO) content and protein S-nitrosylation, suggesting a role of the NTR-thioredoxin (Trx)-redox system in protein denitrosylation. In agreement with these results, the level of S-nitrosylated proteins is increased in the arabidopsis double mutant ntra ntrb as compared with the wild-type.Conclusions The results support for the idea that NTR is involved in protein denitrosylation during auxin-mediated root development. The fact that a high NO concentration induces NTR activity suggests that a feedback mechanism to control massive and unregulated protein S-nitrosylation could be operating in plant cells.  相似文献   

8.

Background

Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported.

Methods

We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC–MS/MS) and proteomic approaches.

Results

Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO molecule caused the highest inhibition of activity (51% at 5 mM SIN-1), with 5 mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite.

Conclusion

These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function.

General significance

This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.  相似文献   

9.
Cyclin-dependent kinase A (CDKA) is a key component for cell cycle progression. The catalytic kinase activity depends on the protein's ability to form an active complex with cyclins and on phosphoregulatory mechanisms. Cell cycle arrest and plant growth impairment under abiotic stress have been linked to different molecular processes triggered by increased levels of reactive oxygen and nitrogen species (ROS and RNS). Among these, posttranslational modifications (PTMs) of key proteins such as CDKA;1 may be of significance. Herein, isolated maize embryo axes were subjected to sodium nitroprusside (SNP) as an inductor of nitrosative conditions to evaluate if CDKA;1 protein was a target for RNS. A high degree of protein nitration was detected; this included the specific Tyr-nitration of CDKA;1. Tyr15 and Tyr19, located at the ATP-binding site, were the selective targets for nitration according to both in silico analysis using the predictive software GPS-YNO2, and in vitro mass spectrometry studies of recombinant nitrated ZmCDKA;1. Spectrofluorometric measurements demonstrated a reduction of ZmCDKA;1-NO2 affinity for ATP. From these results, we conclude that Tyr nitration in CDKA;1 could act as an active modulator of cell cycle progression during redox stress.  相似文献   

10.
S-Nitrosoglutathione (GSNO) is a nitrosothiol which plays a major role in the metabolism of NO in higher plants mediating signaling processes. Protein tyrosine nitration (NO2–Tyr) is a post-translational modification which contributes to protein regulation. The subcellular localization of GSNO, S-nitrosoglutathione reductase (GSNOR), an enzyme which catalyzes its decomposition and protein tyrosine nitration was studied in pea (Pisum sativum L.) leaf plants with the aid of the electron microscopy immunogold-labeling technique. Our findings show that GSNO, GSNOR and nitrated proteins are present in the different subcellular compartments of leaf cells which include chloroplasts, cytosol, mitochondria, and peroxisomes. Given that pea peroxisomes are one of the cell compartments where nitric oxide (NO) has been thoroughly studied, our results provide additional insights into the metabolism of NO in this organelle where NO and GSNO could function as signal molecules in cross talk between the different cell compartments.  相似文献   

11.
Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development.  相似文献   

12.

Background and Aims

Green kiwifruit (Actinidia deliciosa) retain high concentrations of chlorophyll in the fruit flesh, whereas in gold-fleshed kiwifruit (A. chinensis) chlorophyll is degraded to colourless catabolites during fruit development, leaving yellow carotenoids visible. The plant hormone group the cytokinins has been implicated in the delay of senescence, and so the aim of this work was to investigate the link between cytokinin levels in ripening fruit and chlorophyll de-greening.

Methods

The expression of genes related to cytokinin metabolism and signal transduction and the concentration of cytokinin metabolites were measured. The regulation of gene expression was assayed using transient activation of the promoter of STAY-GREEN2 (SGR2) by cytokinin response regulators.

Key Results

While the total amount of cytokinin increased in fruit of both species during maturation and ripening, a high level of expression of two cytokinin biosynthetic gene family members, adenylate isopentenyltransferases, was only detected in green kiwifruit fruit during ripening. Additionally, high levels of O-glucosylated cytokinins were detected only in green kiwifruit, as was the expression of the gene for zeatin O-glucosyltransferase, the enzyme responsible for glucosylating cytokinin into a storage form. Season to season variation in gene expression was seen, and some de-greening of the green kiwifruit fruit occurred in the second season, suggesting environmental effects on the chlorophyll degradation pathway. Two cytokinin-related response regulators, RRA17 and RRB120, showed activity against the promoter of kiwifruit SGR2.

Conclusions

The results show that in kiwifruit, levels of cytokinin increase markedly during fruit ripening, and that cytokinin metabolism is differentially regulated in the fruit of the green and gold species. However, the causal factor(s) associated with the maintenance or loss of chlorophyll in kiwifruit during ripening remains obscure.  相似文献   

13.
Plastids contain an NADH dehydrogenase complex (Ndh complex) homologous to the mitochondrial complex I (EC 1.6.5.3). In this work, we have analysed the changes in the Ndh complex during ripening of pepper (Capsicum annum L., cv. Maor) and tomato (Lycopersicon esculentum Mill., cv. Marglobe) fruits. The Ndh complex was mainly present in the outer pericarp of tomato fruits, whereas it was evenly distributed in the pericarp of pepper. In both kinds of fruit we observed a decrease in the total amount of Ndh complex from the green to the red stage of development. This decrease corresponds to parallel decreases in the content and activity of the complex in plastids during the transition from chloroplasts to chromoplasts. Levels of plastidial quinol peroxidase activity were also higher during the first stages of tomato fruit development than during the latter stages of ripening. However, when referred to total plastid protein, the amount and activity of the Ndh complex in chloroplasts isolated from green fruits was higher than in chloroplasts isolated from leaves. These results strongly suggest that function of the Ndh complex, probably related to a plastidial electron transport chain, can be important during the first stages of fruit development.  相似文献   

14.
Abstract

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.  相似文献   

15.
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.  相似文献   

16.
Inorganic nitrite, derived from the reduction of nitrate in saliva, has recently emerged as a protagonist in nitric oxide (?NO) biology as it can be univalently reduced to ?NO, in the healthy human stomach. Important physiological implications have been attributed to nitrite-derived ?NO in the gastrointestinal tract, namely modulation of host defense, blood flow, mucus formation and motility. At acidic pH, nitrite generates different nitrogen oxides depending on the local microenvironment (redox status, gastric content, pH, inflammatory conditions), including ?NO, nitrogen dioxide (?NO2), dinitrogen trioxide (N2O3), and peroxynitrite. Thus, the gastric environment is a significant source of nitrating and nitrosating agents, especially in individuals consuming a nitrate/nitrite-rich diet on a daily basis. Both, the gastric lumen and mucosa contain putative targets for nitration, not only proteins and lipids from ingested aliments but also endogenous proteins secreted by the oxyntic glands. The physiological and functional consequences of nitration of gastric mediators will impact on local processes including food digestion and ulcerogenesis. Additionally, gastric nitration products (such as nitrated lipids) may be absorbed and affect systemic pathways. Thus, dietary ingestion of nitrate will have direct consequences for endogenous protein nitration, as indicated by our preliminary data.  相似文献   

17.
Pepper fruits in green and red maturation stages were selected to study the protein pattern modified by oxidation measuring carbonylated proteins in isolated mitochondria, together with the accumulation of superoxide radical and hydrogen peroxide in the fruits. MALDI‐TOF/TOF analysis identified as carbonylated proteins in both green and red fruits, formate dehydrogenase, NAD‐dependent isocitrate dehydrogenase, porin, and defensin, pointing to a common regulation by carbonylation of these proteins independently of the maturation stage. However, other proteins such as glycine dehydrogenase P subunit and phosphate transporter were identified as targets of carbonylation only in green fruits, whereas aconitase, ATPase β subunit, prohibitin, orfB protein, and cytochrome C oxidase, were identified only in red fruits. In general, the results suggest that carbonylation of mitochondrial proteins is a PTM that drives the complex ripening process, probably establishing the accumulation and functionality of some mitochondrial proteins in the nonclimacteric pepper fruit.  相似文献   

18.

Background

Protein S-nitrosation is an important post-translational modification altering protein function. Interaction of nitric oxide with thiols is an active area of research, and is one of the mechanisms by which NO exerts its biological effects. Biotin switch assay is the method, which has been developed to identify S-nitrosated proteins. The major concern with biotin switch assay includes reducing disulfide which may lead to false positives. We report a modification of the biotin switch assay where sinapinic acid is utilized instead of ascorbate to eliminate potential artifacts in the detection of S-nitrosated proteins.

Methods

The denitrosation ability of sinapinic acid was assessed by monitoring either the NO or NO2- released by chemiluminescent NO detection or by the griess assay, respectively. DTNB assay was used to compare disulfide reduction by ascorbate and sinapinic acid. Sinapinic acid and ascorbate were compared in the biotin switch detection of S-nitrosoproteins in RAW 264.7 cells ± S-nitrosocysteine (CysNO) exposure.

Results

We show that sinapinic acid has the ability to denitrosate S-nitrosothiols at pH 7.0 and denitrate plus denitrosate at pHs 8 and 8.5. Unlike ascorbate, sinapinic acid degrades S-nitrosothiols, but it does not reduce disulfide bridges.

Conclusions

Sinapinic acid denitrosate RSNO and does not reduce disulfides. Thus can readily replace ascorbate in detection of S-nitrosated proteins in biotin switch assay.

General significance

The work described is important in view of protein S-nitrosation. In this study we provide an important modification that eliminates artifacts in widely used technique for detecting the S-nitrosoproteome, the biotin switch assay.  相似文献   

19.
Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules.Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes.Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.  相似文献   

20.
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O2?*), to form peroxynitrite (ONOO?) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc–sulfur clusters, iron–sulfur clusters, and copper, resulting in the formation of a stable metal–nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron–thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号