首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The insect intercalary segment represents a small and appendage-less head segment that is homologous to the second antennal segment of Crustacea and the pedipalpal segment in Chelicerata, which are generally referred to as “tritocerebral segment.” In Drosophila, the gene collier (col) has an important role for the formation of the intercalary segment. Here we show that in the beetle Tribolium castaneum col is required for the activation of the segment polarity genes hedgehog (hh), engrailed (en) and wingless (wg) in the intercalary segment, and is a regulatory target of the intercalary segment specific Hox gene labial (lab). Loss of Tc col function leads to increased cell death in the intercalary segment. In the milkweed bug Oncopeltus fasciatus, the loss of col function has a more severe effect in lacking the intercalary segment and also affecting the adjacent mandibular and antennal segments. By contrast, col is not expressed early in the second antennal segment in the crustacean Parhyale hawaiensis or in the pedipalpal segment of the spider Achaearanea tepidariorum. This suggests that the early expression of col in a stripe and its role in tritocerebral segment development is insect-specific and might correlate with the appendage-less morphology of the intercalary segment.  相似文献   

2.
The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a “bend and zipper” model for insect head capsule formation.  相似文献   

3.
Embryonic development of the head of Oxyrhachis tarandus (Membracidae) has been investigated in detail to settle the controversy of head segmentation and to refute the occurrence of an intercalary segment. The head is formed from six distinct elements: the prostominal lobe, the paired cephalic lobes, the antennal segment and the three noncontroversial gnathal segments. The prostomial lobe, which possesses a neuromere and a pair of coelomic cavities, represents the first body segment, called the prostomial segment. The tritocerebral lobes of the brain and the stomatogastric nervous system, consisting of a frontal ganglion, clypeolabral nerves, and the recurrent nerve etc., develop from the neuromere of the prostomial lobe. The tritocerebrum thus belongs to the prostomial segment rather than to an imaginary intercalary segment and mainly represents the ganglionic center of the stomatogastric nervous system in the brain. Frons, clypeus, and labrum develop from the outer wall of the prostomial lobulate plate, whereas the epipharyngeal wall, including the cibarial pump, develops from its inner wall. The presence of three coelomic cavities and of three distinct neural masses in the cephalic lobes during the initial stages of development shows that they have developed by the fusion of three distinct segments during the long phylogenetic history of insects. The portion of the germ band presently considered as the intercalary segment is actually the sternal part of the antennal segment. The neural cells located in this region give rise to the deutocerebrum by shifting forward, around the stomodaeum, and always leaving a commissure behind. The intercalary segment is thus a complete illusion. The antennal segment is postoral in the beginning and bears a pair of coelomic cavities, but later on it shifts forward and its sternal part invaginates into the stomodaeum.  相似文献   

4.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

5.
Arthropod limbs are arguably the most diverse organs in the animal kingdom. Morphological diversity of the limbs is largely based on their segmentation, because this divides the limbs into modules that can evolve separately for new morphologies and functions. Limb segmentation also distinguishes the arthropods from related phyla (e.g. onychophorans) and thus forms an important evolutionary innovation in arthropods. Understanding the genetic basis of limb segmentation in arthropods can thus shed light onto the mechanisms of macroevolution and the origin of a character (articulated limbs) that defines a new phylum (arthropods). In the fly Drosophila limb segmentation and limb growth are controlled by the Notch signaling pathway. Here we show that the Notch pathway also controls limb segmentation and growth in the spider Cupiennius salei, a representative of the most basally branching arthropod group Chelicerata, and thus this function must trace from the last common ancestor of all arthropods. The similarities of Notch and Serrate function between Drosophila and Cupiennius are extensive and also extend to target genes like odd-skipped, nubbin, AP-2 and hairy related genes. Our data confirm that the jointed appendages, which are a morphological phylotypic trait of the arthropods and the basis for naming the phylum, have a common developmental genetic basis. Notch-mediated limb segmentation is thus a molecular phylotypic trait of the arthropods.  相似文献   

6.
The evolutionary origin of the tritocerebral neuromere, which is a brain segment located at the junction between the supra- and subesophageal ganglia in most mandibulates (arthropods such as crustaceans and insects), is a subject rich in contentious debate. Various models have argued that the tritocerebrum came from a segmental nerve cord ganglia that was recruited into the head during the course of arthropod evolution. However, despite much thought on the subject, the origin of the tritocerebrum remains obscure. Here I describe the development of the tritocerebral commissure in Drosophila and demonstrate that the tritocerebral and mandibular commissures actually form as one commissure and then separate in a manner very similar to how the anterior and posterior commissures of a ventral nerve cord neuromere form. I propose that the tritocerebral neuromere originated from the splitting of an ancestral neuromere located in the anterior subesophageal ganglion into distinct tritocerebral and mandibular neuromeres. Also, I discuss the problem of arthropod brain neuromere homology in reference to this hypothesis.  相似文献   

7.
Segmentation in the head of the embryo of the Colorado beetleLeptinotarsa decemlineata is described on the basis of anti-engrailed (en) immunostaining of germ band stages. Six segmental units can be identified with this technique. Three segmentalen stripes can be distinguished in the gnathal region, a weak stripe interrupted medially shows the intercalary segment rudiment, a pair of oblique stripes indicate the antennal segment, and one pair of preantennalen spots are taken to indicate a sixth segment. In the broad head lobes of the beetle the spacing of the six segmental units as demarcated byen regions is similar to that in other parts of the germ band. The results are discussed with respect to old and new data concerning the number of head segments and origin of the compound eye in insects.  相似文献   

8.
We investigated brain development in the horseshoe crab Limulus polyphemus and several other arthropods via immunocytochemical methods, i.e. antibody stainings against acetylated alpha-tubulin and synapsin. According to the traditional view, the first appendage-bearing segment in chelicerates (the chelicerae) is not homologous to the first appendage-bearing segment of mandibulates (first antenna, deutocerebrum) but to the segment of the second antenna (tritocerebrum) or the intercalary segment in hexapods and myriapods. Accordingly, the segment of the deutocerebrum in chelicerates would be completely reduced. The main arguments for this view are: (1) the postoral origin of the cheliceral ganglion, (2) a poststomodaeal commissure, and (3) a connection of the cheliceral ganglion to the stomatogastric system. Our data show that these arguments are not convincing. During the development of horseshoe crabs there is no evidence for a former additional segment in front of the chelicerae. Instead, comparison of the brain structure (neuropil ring) between chelicerates, crustaceans and insects shows remarkable similarities. Furthermore, the cheliceral commissure in horseshoe crabs runs mainly praestomodaeal, which would be unique for a tritocerebral commissure. An unbiased view of the developing nervous system in the "head" of chelicerates, crustaceans and insects leads to a homologisation of the cheliceral segment and that of the (first) antenna (= deutocerebrum) of mandibulates that is also congruous to the interpretation of the Hox gene expression patterns. Thus, our data provide morphological evidence for the existence of a chelicerate deutocerebrum.  相似文献   

9.
10.
Scanning electron microscopy was used to demonstrate clearly the existence of small transitory appendages on the so-called “intercalary segment” in young embryos of both Anurida maritima (Collembola : Arthropleona) and Hyphantria cunea (Lepidoptera : Arctiidae). In H. cunea, through ablation of antenna and mandible of the studied embryos, the intercalary appendages could still be demonstrated during a period when they had become masked for direct observation.The new facts reported in this paper are congruent with the classical concept that the intercalary segment of insects is homologous to the 2nd antennal segment of crustaceans, while its transient appendages represent the lost 2nd antennae.  相似文献   

11.
The domesticated silkworm, Bombyx mori, belongs to the intermediate germband insects, in which the anterior segments are specified in the blastoderm, while the remaining posterior segments are sequentially generated from the cellularized growth zone. The pattern formation is distinct from Drosophila but somewhat resembles a vertebrate. Notch signaling is involved in the segmentation of vertebrates and spiders.Here, we studied the function of Notch signaling in silkworm embryogenesis via RNA interference (RNAi). Depletion of Bmdelta, the homolog of the Notch signaling ligand, led to severe defects in segment patterning, including a loss of posterior segments and irregular segment boundaries. The paired appendages on each segment were symmetrically fused along the ventral midline in Bmdelta RNAi embryos. An individual segment seemed to possess only one segmental appendage. Segmentation in prolegs could be observed.Our results show that Notch signaling is employed in not only appendage development but also body segmentation. Thus, conservation of Notch-mediated segmentation could also be extended to holometabolous insects. The involvement of Notch signaling seems to be the ancestral segmentation mechanism of arthropods.  相似文献   

12.
Male Pardosa milvina wolf spiders use their pedipalps both for copulation and courtship. Pedipalp loss is significantly more common among adult males compared to females. We measured the courtship and mating effects associated with the loss of one or both pedipalps among adult male P. milvina. Pedipalp loss significantly reduced courtship intensity, but had no influence on mounting success. Intact males were less likely to be cannibalized and suffered fewer predatory attacks by females than autotomized males. Loss of the left pedipalp resulted in significantly less intense courtship, higher female aggression levels, and delayed onset of courtship whereas loss of the right pedipalp minimally affected male and female behavior relative to intact males. Pedipalp displays may function in reducing female aggression rather than increasing female receptivity.  相似文献   

13.
Our analysis of head segmentation in the locust embryo reveals that the labrum is not apical as often interpreted but constitutes the topologically fused appendicular pair of appendages of the third head metamere. Using molecular, immunocytochemical and retrograde axonal staining methods we show that this metamere, the intercalary segment, is innervated by the third brain neuromere-the tritocerebrum. Evidence for the appendicular nature of the labrum is firstly, the presence of an engrailed stripe within its posterior epithelium as is typical of all appendages in the early embryo. Secondly, the labrum is innervated by a segmental nerve originating from the third brain neuromere (the tritocerebrum). Immunocytochemical staining with Lazarillo and horseradish peroxidase antibodies reveal that sensory neurons on the labrum contribute to the segmental (tritocerebral) nerve via the labral nerve in the same way as for the appendages immediately anterior (antenna) and posterior (mandible) on the head. All but one of the adult and embryonic motoneurons innervating the muscles of the labrum have their cell bodies and dendrites located completely within the tritocerebral neuromere and putatively derive from engrailed expressing tritocerebral neuroblasts. Molecular evidence (repo) suggests the labrum is not only appendicular but also articulated, comprising two jointed elements homologous to the coxa and trochanter of the leg.  相似文献   

14.

Background  

A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation.  相似文献   

15.
 Recent advances in developmental genetics of Drosophila have uncovered some of the key molecules involved in the positioning and outgrowth of the leg primordia. Although expression patterns of these molecules have been analyzed in several arthropod species, broad comparisons of mechanisms of limb development among arthropods remain somewhat speculative since no detailed studies of limb development exist for crustaceans, the postulated sister group of insects. As a basis for such comparisons, we analysed limb development in a primitive branchiopod crustacean, Triops longicaudatus. Adults have a series of similar limbs with eight branches or lobes that project from the main shaft. Phalloidin staining of developing limbs buds shows the distal epithelial ridge of the early limb bud exhibits eight folds that extend in a dorsal ventral (D/V) arc across the body. These initial folds subsequently form the eight lobes of the adult limb. This study demonstrates that, in a primitive crustacean, branched limbs do not arise via sequential splitting. Current models of limb development based on Drosophila do not provide a mechanism for establishing eight branches along the D/V axis of a segment. Although the events that position limbs on a body segment appear to be conserved between insects and crustaceans, mechanisms of limb branching may not. Received: 28 February 1996/Accepted: 24 June 1996  相似文献   

16.
Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.  相似文献   

17.
Axis patterning and appendage development have been well studied in Drosophila melanogaster, a species in which both limb and segment morphogenesis are derived. In Drosophila, positional information from genes important in anteroposterior and dorsoventral axis formation, including wingless (wg) and decapentaplegic (dpp), is required for allocating and patterning the appendage primordia. We used RNA interference to characterize the functions of wg and dpp in the red flour beetle, Tribolium castaneum, which retains more ancestral modes of limb and segment morphogenesis. We also characterized the expression of potential targets of the WG and DPP signaling pathways in these embryos. Tribolium embryos in which dpp had been downregulated had defects in the dorsalmost body wall, but did not appear to have been globally repatterned and had normal appendages. Downregulation of wg led to the loss of segment boundaries, gnathal and thoracic appendages, and lateral head lobes, and to changes in the expression of dpp, Distal-less, and Engrailed. The functions of wg varied along both the anteroposterior and dorsoventral axes of the embryo. Phylogenetic comparisons indicate that the role of WNT signaling in segment boundary formation is evolutionarily old, but that its role in appendage allocation originated in the common ancestor of holometabolous insects.  相似文献   

18.
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.  相似文献   

19.
The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.  相似文献   

20.
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号