首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
内质网应激偶联炎症反应与慢性病发病机制   总被引:1,自引:0,他引:1  
Yan J  Hu ZW 《生理科学进展》2010,41(4):261-266
内质网是合成细胞内分泌蛋白和膜蛋白并进行蛋白折叠的主要细胞器。新近研究证明,当内质网蛋白质合成与折叠的负担增加、非折叠或错误折叠蛋白质堆积,可激活内质网的几组特定信号转导通路,将这些应激信号传递到细胞浆和细胞核,引起未/错误折叠蛋白反应。这对维持细胞动态平衡和生物体的发育具有重要意义。更为重要的是,未/错误折叠蛋白反应能够与细胞内炎症反应信号转导通路偶联,是非感染性致病原引发炎症反应的主要原因。因此,内质网应激-未/错误折叠蛋白反应-炎症反应在特定的细胞发生偶联是许多炎症疾病的发病机制。本文综述该领域的研究进展,并介绍了内质网应激信号和炎症反应偶联参与一些慢性病发病的分子细胞机制。这些研究不仅加深人们对这些慢性病发病机制的了解,也有助于对调节内质网应激-炎症反应的药物的研发。  相似文献   

2.
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.  相似文献   

3.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

4.
Disturbances in proteostasis are observed in many neurodegenerative diseases. This leads to activation of protein quality control to restore proteostasis, with a key role for the removal of aberrant proteins by proteolysis. The unfolded protein response (UPR) is a protein quality control mechanism of the endoplasmic reticulum (ER) that is activated in several neurodegenerative diseases. Recently we showed that the major proteolytic pathway during UPR activation is via the autophagy/lysosomal system. Here we investigate UPR induction if the other major proteolytic pathway of the ER -ER associated degradation (ERAD)-is inhibited. Surprisingly, impairment of ERAD results in decreased UPR activation and protects against ER stress toxicity. Autophagy induction is not affected under these conditions, however, a striking relocalization of the lysosomes is observed. Our data suggest that a protective UPR-modulating mechanism is activated if ERAD is inhibited, which involves lysosomes. Our data provide insight in the cross-talk between proteolytic pathways involved in ER proteostasis. This has implications for neurodegenerative diseases like Alzheimer’s disease where disturbed ER proteostasis and proteolytic impairment are early phenomena in the pathology.  相似文献   

5.
6.
7.
The accumulation of unfolded proteins in the ER lumen induces intracellular signaling mediated by the ER stress sensor protein IRE1. Our recent study identified a new common cis-element of ER stress-responsive genes (such as rice BiP paralogs and WRKY45) that were regulated via an IRE1-dependent pathway. ER stress-responsive cis-elements had been expected to be conserved between plants and mammals. However, contrary to expectations, sequences of the plant cis-element, pUPRE-II, were not identical to those of its mammalian counterpart. Additionally, pUPRE-II also interacted with another ER stress sensor protein and mediated multiple signaling pathways. Here, we provide a summary of the results that suggest the complicated mechanism underlying the regulation of ER stress-responsive gene expression in plants.  相似文献   

8.
Endoplasmic reticulum (ER) stress is defined as an accumulation of unfolded proteins in the endoplasmic reticulum. 4-phenylbutyrate (4-PBA) has been demonstrated to promote the normal trafficking of the DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutant from the ER to the plasma membrane and to restore activity. We have reported that 4-PBA protected against cerebral ischemic injury and ER stress-induced neuronal cell death. In this study, we revealed that 4-PBA possesses chemical chaperone activity in vitro, which prevents the aggregation of denatured alpha-lactalbumin and bovine serum albumin (BSA). Furthermore, we investigated the effects of 4-PBA on the accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R) pathologically relevant to the loss of dopaminergic neurons in autosomal recessive juvenile parkinsonism (AR-JP). Interestingly, 4-PBA restored the normal expression of Pael-R protein and suppressed ER stress induced by the overexpression of Pael-R. In addition, we showed that 4-PBA attenuated the activation of ER stress-induced signal transduction pathways and subsequent neuronal cell death. Moreover, 4-PBA restored the viability of yeasts that fail to induce an ER stress response under ER stress conditions. These results suggest that 4-PBA suppresses ER stress by directly reducing the amount of misfolded protein, including Pael-R accumulated in the ER.  相似文献   

9.
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.  相似文献   

10.
未折叠蛋白质应答   总被引:3,自引:0,他引:3  
内质网是真核细胞中蛋白质合成、折叠与分泌的重要细胞器.细胞进化出一套完整的机制来监督和帮助内质网内蛋白质的折叠与修饰.而当错误折叠的蛋白质累积时,细胞通过一系列信号转导途径,对其进行应答,包括增强蛋白质折叠能力、停滞大多数蛋白质的翻译、加速蛋白质的降解等.如果内质网功能素乱持续,细胞将最终启动凋亡程序.这些反应被统称为未折叠蛋白质应答(unfolded protein response,UPR).UPR是多个信号转导通路的总称,包括IRE1-XBP1、PERK-ATF4以及ATF6等信号途径.除了应激条件外,UPR还被用于正常生理条件下的调节,例如胆固醇合成代谢的负反馈调控.  相似文献   

11.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

12.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the ER membrane kinases PERK and IRE1 leading to the unfolded protein response (UPR). We show here that UPR activation triggers PERK and IRE1 segregation from BiP and their sorting with misfolded proteins to the ER-derived quality control compartment (ERQC), a pericentriolar compartment that we had identified previously. PERK phosphorylates translation factor eIF2alpha, which then accumulates on the cytosolic side of the ERQC. Dominant negative PERK or eIF2alpha(S51A) mutants prevent the compartmentalization, whereas eIF2alpha(S51D) mutant, which mimics constitutive phosphorylation, promotes it. This suggests a feedback loop where eIF2alpha phosphorylation causes pericentriolar concentration at the ERQC, which in turn amplifies the UPR. ER-associated degradation (ERAD) is an UPR-dependent process; we also find that ERAD components (Sec61beta, HRD1, p97/VCP, ubiquitin) are recruited to the ERQC, making it a likely site for retrotranslocation. In addition, we show that autophagy, suggested to play a role in elimination of aggregated proteins, is unrelated to protein accumulation in the ERQC.  相似文献   

13.
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent an important challenge for healthcare providers. The identification of new biomarkers/pharmacological targets for kidney disease is required for the development of more effective therapies. Several studies have shown the importance of the endoplasmic reticulum (ER) stress in the pathophysiology of AKI and CKD. ER is a cellular organelle devolved to protein biosynthesis and maturation, and cellular detoxification processes which are activated in response to an insult. This review aimed to dissect the cellular response to ER stress which manifests with activation of the unfolded protein response (UPR) with its major branches, namely PERK, IRE1α, ATF6 and the interplay between ER and mitochondria in the pathophysiology of kidney disease. Further, we will discuss the relationship between mediators of renal injury (with specific focus on vascular growth factors) and ER stress and UPR in the pathophysiology of both AKI and CKD with the aim to propose potential new targets for treatment for kidney disease.  相似文献   

14.
胡雨荣  陈勇  刘勇 《生理学报》2021,73(1):115-125
在真核细胞中,内质网是蛋白合成、加工及质量监控的关键细胞器,也是Ca2+储存及脂质合成的重要场所.细胞通过未折叠蛋白响应(unfolded protein response,UPR)感应外界不同刺激引发的内质网应激,在维持细胞功能稳态中发挥至关重要的作用.在哺乳动物中,三个位于内质网的跨膜蛋白——肌醇依赖酶la(ino...  相似文献   

15.
Accumulation of unfolded proteins in the endoplasmic reticulum triggers the unfolded protein response (UPR) pathway, which increases the expression of chaperones to maintain the homeostasis. Calreticulin is a calcium-binding chaperone located in the lumen of endoplasmic reticulum (ER). Here we show that in response to a UPR inducing reagent, tunicamycin, the expression of calreticulin (crt-1) is specifically up-regulated in Caenorhabditis elegans. Tunicamycin (TM) induced expression of the crt-1 requires IRE-1 and XBP-1 but is ATF-6 and PEK-1 independent. Analysis of the crt-1 promoter reveals a putative XBP-1 binding site at the -284 to -278 bp region, which was shown to be necessary for TM-mediated induction. Genetic analysis of crt-1 mutants and mutants of UPR pathway genes show various degrees of developmental arrest upon TM treatment. Our results suggest that the TM-induced UPR pathway culminates in the up-regulation of crt-1, which protects the worm from deleterious accumulation of unfolded proteins in the ER. Knockdown of the crt-1, pdi-2, or pdi-3 increased the crt-1 expression, whereas knockdown of the hsp-3 or hsp-4 did not have any effect on crt-1 expression, indicating the existence of complex compensatory networks to cope up with ER stress.  相似文献   

16.
17.
Singlet oxygen (1O2) is a by‐product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1O2‐overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1O2 signalling pathway involves the endoplasmic reticulum (ER)‐mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR‐inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light‐induced cell death. Conversely, light acclimation of ch1 to 1O2 stress put a limitation in the high light‐induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1O2 induces the ER‐mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1O2, and a strong activation of the whole UPR is associated with cell death.  相似文献   

18.
Oxidative stress has been implicated in mechanisms leading to neuronal cell injury in various pathological states of the brain. Here, we investigated the effect of peroxide exposure on the expression of genes coding for cytoplasmic and endoplasmic reticulum (ER) stress proteins. Primary neuronal cell cultures were exposed to H(2)O(2) for 6 h and mRNA levels of hsp70, grp78, grp94, gadd153 were evaluated by quantitative PCR. In addition, peroxide-induced changes in protein synthesis and cell viability were investigated. Peroxide treatment of cells triggered an almost 12-fold increase in hsp70 mRNA levels, but a significant decrease in grp78, grp94 and gadd153 mRNA levels. To establish whether peroxide exposure blocks the ER-resident stress response, cells were also exposed to thapsigargin (Tg, a specific inhibitor of ER Ca(2+)-ATPase) which has been shown to elicit the ER stress response. Tg exposure induced 7.2-fold, 3.6-fold and 8.8-fold increase in grp78, grp94 and gadd153 mRNA levels, respectively. However, after peroxide pre-exposure, the Tg-induced effect on grp78, grp94 and gadd153 mRNA levels was completely blocked. The results indicate that oxidative damage causes a selective down-regulation of the neuronal stress response activated under conditions of ER dysfunction. This down-regulation was only observed in cultures exposed to peroxide levels which induced severe suppression of protein synthesis and cell injury, implying a causative link between peroxide-induced down-regulation of ER stress response system and development of neuronal cell injury. These observations could have implications for our understanding of the mechanisms underlying neuronal cell injury in pathological states of the brain associated with oxidative damage, including Alzheimer's disease where the neuronal stress response activated under conditions of ER dysfunction has been shown to be down-regulated. Down-regulation of ER stress response may increase the sensitivity of neurones to an otherwise nonlethal form of stress.  相似文献   

19.
20.
Aging is enhanced by hypoxia and oxidative stress. As the lens is located in the hypoglycemic environment under hypoxia, aging lens with diabetes might aggravate these stresses. This study was designed to examine whether low glucose under hypoxic conditions induces the unfolded protein response (UPR), and also if the UPR then generates the reactive oxygen species (ROS) in lens epithelial cells (LECs). The UPR was activated within 1 h by culturing the human LECs (HLECs) and rat LECs in <1.5 mM glucose under hypoxic conditions. These conditions also induced the Nrf2-dependent antioxidant-protective UPR, production of ROS, and apoptosis. The rat LECs located in the anterior center region were the least susceptible to the UPR, whereas the proliferating LECs in the germinative zone were the most susceptible. Because the cortical lens fiber cells are differentiated from the LECs after the onset of diabetes, we suggest that these newly formed cortical fibers have lower levels of Nrf2, and are then oxidized resulting in cortical cataracts. Thus, low glucose and oxygen conditions induce the UPR, generation of ROS, and expressed the Nrf2 and Nrf2-dependent antioxidant enzymes at normal levels. But these cells eventually lose reduced glutathione (GSH) and induce apoptosis. The results indicate a new link between hypoglycemia under hypoxia and impairment of HLEC functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号