首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compare various allosteric models that have been proposed to explain cooperative oxygen binding to hemoglobin, including the two-state allosteric model of Monod, Wyman, and Changeux (MWC), the Cooperon model of Brunori, the model of Szabo and Karplus (SK) based on the stereochemical mechanism of Perutz, the generalization of the SK model by Lee and Karplus (SKL), and the Tertiary Two-State (TTS) model of Henry, Bettati, Hofrichter and Eaton. The preponderance of experimental evidence favors the TTS model which postulates an equilibrium between high (r)- and low (t)-affinity tertiary conformations that are present in both the T and R quaternary structures. Cooperative oxygenation in this model arises from the shift of T to R, as in MWC, but with a significant population of both r and t conformations in the liganded T and in the unliganded R quaternary structures. The TTS model may be considered a combination of the SK and SKL models, and these models provide a framework for a structural interpretation of the TTS parameters. The most compelling evidence in favor of the TTS model is the nanosecond - millisecond carbon monoxide (CO) rebinding kinetics in photodissociation experiments on hemoglobin encapsulated in silica gels. The polymeric network of the gel prevents any tertiary or quaternary conformational changes on the sub-second time scale, thereby permitting the subunit conformations prior to CO photodissociation to be determined from their ligand rebinding kinetics. These experiments show that a large fraction of liganded subunits in the T quaternary structure have the same functional conformation as liganded subunits in the R quaternary structure, an experimental finding inconsistent with the MWC, Cooperon, SK, and SKL models, but readily explained by the TTS model as rebinding to r subunits in T. We propose an additional experiment to test another key prediction of the TTS model, namely that a fraction of subunits in the unliganded R quaternary structure has the same functional conformation (t) as unliganded subunits in the T quaternary structure.  相似文献   

2.
3.
A W Lee  M Karplus  C Poyart  E Bursaux 《Biochemistry》1988,27(4):1285-1301
The relationship in hemoglobin between cooperativity (dependence of the Hill constant on pH0 and the Bohr effect (dependence of the mean oxygen affinity on pH) can be described by a statistical thermodynamic model [Szabo, A., & Karplus, M. (1972) J. Mol. Biol. 72, 163-197; Lee, A., & Karplus, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 7055-759]. In this model, salt bridges and other interactions serve to couple tertiary and quaternary structural changes. To test and refine the model, it is applied to the analysis of the pH dependence of the tetramer Adair constants corrected for statistical factors (K4i', i = 1-4). Attention is focused on the proton release of the first (delta H1+ = alpha log K41'/alpha pH) and last (delta H4+ = alpha log K44'/alpha pH) oxygenation steps, where K4i' are the Adair constants corrected for statistical factors. Measurements of delta H1+ and delta H4+ under carefully controlled conditions are reported, and good agreement between the model calculation and these experimental results is obtained. The salt bridges are found to be partially coupled to the ligation state in the deoxy quaternary structure; it is shown that a Monod-Wyman-Changeux-type model, in which the salt bridges are coupled only to quaternary structural change, is inconsistent with the data for delta H1. The significance of the present analysis for an evaluation of the Perutz mechanism [Perutz, M.F. (1970) Nature (London) 228, 726-734, 734-739] and other models for hemoglobin cooperativity is discussed.  相似文献   

4.
The kinetics of proton release on ligation of menhaden hemoglobin was studied by flash photolysis over a range of pH. In contrast to all previous kinetic work with human hemoglobin, a nonlinear relationship between proton release and CO binding was found. Proton uptake was also observed in the course of O2 replacement by CO at low pH. It follows that at least part of the proton release is associated with quaternary rather than tertiary conformational changes i.e. this result is consistent with a two-state model in which L is a function of pH.  相似文献   

5.
Analysis of the tertiary structural alterations in hemoglobin induced by ligand binding demonstrates that an allosteric core composed of the heme, histidine F8, the FG corner and part of the F-helix plays an essential role in co-operativity. This conclusion is based on structural and spectroscopic data and theoretical studies of hemoglobin chains. The methodology employed in the calculations is presented with details of the empirical energy function. Energy minimized structures of the unliganded hemoglobin chains, which serve as reference systems for the analysis, are described. To determine the structural changes induced by ligand binding, the effects of FeN bond shortening and of heme translation and tilting perturbations are examined. Energy minimization in the presence of the perturbations serves to provide information concerning the globin structural modifications produced by them. The validity of the results is supported by comparisons with the X-ray data of Anderson, Pulsinelli, Baldwin and Chothia on tertiary changes in the hemoglobin subunits.Internal to the allosteric core, there appear to be two stable positions for its elements: one of these corresponds to the liganded and the other to the unliganded species. The unliganded geometry fits without strain into the deoxy tetramer, while the liganded one fits without strain into the oxy tetramer. On ligation of a subunit in the deoxy tetramer, the structural changes within the allosteric core are in the direction of those found in going from the unliganded deoxy to the liganded oxy system, although they are reduced by the presence of constraints due to the other subunits in the deoxy tetramer. In addition, the quaternary constraints in the deoxy tetramer prevent the large overall displacement of the allosteric core that occurs in the transition to the liganded oxy tetramer. The coupling between the changes internal to the allosteric core, produced on ligation and the overall displacement of the core that accompanies the quaternary transition, is an essential element of the co-operative mechanism. As shown in previous work (Gelin & Karplus, 1977), the proximal histidine serves as the link between the position of the heme and the F-helix; the asymmetric orientation of the histidine in the deoxy structure, coupled with contributions from other heme-protein interactions, appears to initiate the tertiary structural changes induced by ligand binding. The reduced oxygen affinity of hemoglobin results not from tension on the heme in the unliganded structure (there is none) but instead from strain in the liganded subunit of the tetramer within the deoxy quaternary structure. Further, the changes in the allosteric core provide a relatively localized reaction path for transmitting information concerning ligand binding from the heme group to the surface of the subunit; particularly in the α-chain, the residue Val FG5 appears to play an important role in the reaction path.The present analysis has important implications for realistic statistical thermodynamic models of hemoglobin co-operativity. It suggests that the previously formulated model (Szabo & Karplus, 1972) should be generalized by the introduction of two different subunit tertiary structures in the deoxy and in the oxy tetramer; they would be associated with the unliganded and the liganded allosteric core, respectively, and would take account of steric constraints that reduce the ligand affinity of the deoxy tetramer.  相似文献   

6.
7.
8.
9.
Mills and Ackers (Mills, F.C., and Ackers, G.K. (1979) J. Biol. Chem. 254, 2881-2887) have reported the subunit interactions of hemoglobin to decrease on binding of the fourth molecule of oxygen to hemoglobin. This effect, which they called quaternary enhancement, is incompatible with the two-state Monod, Wyman, and Changeux allosteric model. Their free energy of binding of the fourth molecule (-9.3 kcal/mol) has been compared with independent kinetic estimates which give -8.6 kcal/mol. This smaller value is consistent with literature values and allows reasonable representation of the equilibrium curve using the two-state model without invoking quaternary enhancement.  相似文献   

10.
The relative contributions to changes in visible and near UV circular dichroism spectra of hemoglobin of heme ligation and tertiary and quaternary conformational transitions were separated by exploiting the slowing down of structural relaxations for proteins encapsulated in wet, nanoporous silica gels. Spectral signatures, previously assumed to be characteristic of T and R quaternary states, were demonstrated to be specific to different tertiary conformations. The results support the view that ligation and allosteric effectors can modulate the structural and functional properties of hemoglobin by regulating the equilibrium between the same tertiary species within both quaternary states.  相似文献   

11.
Recent functional studies reported on human adult hemoglobin (HbA) show that heterotropic effector-linked tertiary structural changes are primarily responsible for modulating the oxygen affinity of hemoglobin. We present the results of 6-ns molecular dynamics simulations performed to gain insights into the dynamical and structural details of these effector-linked tertiary changes. All-atom simulations were carried out on a series of models generated for T- and R-state HbA, and for 2,3-diphosphoglycerate-bound models. Cross-correlation analyses identify both intra- and intersubunit correlated motions that are perturbed by the presence of the effector. Principal components analysis was used to decompose the covariance matrix extracted from the simulations and reconstruct the trajectories along the principal coordinates representative of functionally important collective motions. It is found that HbA in both quaternary states exists as ensembles of tertiary conformations that introduce dynamic heterogeneity in the protein. 2,3-Diphosphoglycerate induces significant perturbations in the fluctuations of both HbA states that translate into the protein visiting different tertiary conformations within each quaternary state. The analysis reveals that the presence of the effector affects the most important components of HbA motions and that heterotropic effectors modify the overall dynamics of the quaternary equilibrium via tertiary changes occurring in regions where conserved functionally significant residues are located, namely in the loop regions between helices C and E, E and F, and F and G, and in concerted helix motions. The changes are not apparent when comparing the available x-ray crystal structures in the presence and absence of effector, but are striking when comparing the respective dynamic tertiary conformations of the R and T tetramers.  相似文献   

12.
Ligand photodissociation experiments are used to measure the prephotolysis equilibria between doubly liganded R and T quaternary conformers of the symmetric Fe-Co HbCO hybrids, (alpha(FeCO)beta(Co))(2) and (alpha(Co)beta(FeCO))(2). The free energies obtained from these data are used to calculate the cooperative free energies of the (alpha(FeCO)beta(Fe))(2) and (alpha(Fe)beta(FeCO))(2) intermediate CO-ligation states of normal hemoglobin in the T conformation, quantities important to the evaluation of current models of cooperativity. The symmetry rule model, incorporating sequential cooperativity of T-state ligand binding within an alphabeta dimer in addition to the traditional two-state cooperativity of the tetramer, predicts a larger free energy penalty for disturbing both dimers in a doubly liganded T tetramer than would be expected in the two-state model as currently formulated. (Cooperative energy penalties are simply proportional to the number of tetramer-bound ligands in the traditional two-state model.) The value found here for the energies of doubly liganded T microstates in which both dimers are perturbed, 7.9 +/- 0.3 kcal/mol, is consistent with the symmetry rule model but significantly higher than that expected (5-6 kcal/mol) in the two-state model of cooperativity.  相似文献   

13.
EPR spectra of nitrosyl hemes were used to study the quaternary structure of hemoglobin. Human adult hemoglobin has been titrated with nitric oxide at pH 7.0 and 25 degrees C. After the equilibration of NO among the alpha and beta subunits the samples were frozen for EPR measurements. The spectra were fitted by linear combinations of three standard signals: the first arising from NO-beta-hemes and the other two arising for NO-alpha-hemes of molecules in the high- and low-affinity conformations. The fractional amounts of alpha subunits exhibiting the high-affinity spectrum fitted the two-state model (Edelstein, S.J. (1974) Biochemistry 13, 4998-5002) with the allosteric constant L = 7.10(6) and relative affinities cNO alpha and cNO beta approx. 0.01. Hemoglobin has been marked with nitric oxide one chain using low-saturation amounts of nitric oxide. The EPR spectra was studied as a function of oxygen saturation. Linear combinations of the three standard signals above fitted these spectra. The fractions of molecules exhibiting the high-affinity spectrum fitted the two-state model with L = 7 . 10(6), c)2 = 0.0033 and cNO alpha = 0.08, instead of cNO alpha = 0.01. Thus, the two-state model is not adequate to describe the conformational transition of these hybrids. The results present evidence of the non-equivalence between oxygen and nitric oxide as ligands.  相似文献   

14.
The high-resolution proton nuclear magnetic resonance spectra of carp hemoglobin have been compared to those of human normal adult hemoglobin. Carp deoxy and carbonmonoxy hemoglobins in the deoxy-type quaternary state exhibit two downfield exchangeable proton resonances as compared to four seen in human normal adult deoxyhemoglobin. This suggests that two of the hydrogen bonds present in human normal adult deoxyhemoglobin are absent or occur in very different environments in carp hemoglobin. One of the exchangeable proton resonances of carp hemoglobin, while present in the deoxy-type quaternary state of the carbonmonoxy and deoxy derivatives, is absent in the oxy-type quaternary state of both, in agreement with the assignments of these quaternary structures by other methods. The ring-current-shifted proton resonances (sensitive tertiary structural markers) of carp carbonmonoxyhemoglobin are substantially different from those of human normal adult hemoglobin. The aromatic proton resonance region of carp hemoglobin has fewer resonances than that of human normal adult hemoglobin, consistent with its much reduced histidine content. The hyperfine-shifted proximal histidyl NH-exchangeable proton resonances of carp hemoglobin suggest that during the transition from the oxy to the deoxy quaternary structure, there is a greater alteration in the heme pocket of one type of subunits (presumably the beta chain) than that in the other subunit. The present results suggest that there are differences in both tertiary and quaternary structures between carp and human normal adult hemoglobins which could contribute to the great differences in the functional properties between these two proteins.  相似文献   

15.
To understand the interplay between tertiary and quaternary transitions associated with hemoglobin function and regulation, oxygen binding curves were obtained for hemoglobin A fixed in the T quaternary state by encapsulation in wet porous silica gels. At pH 7.0 and 15 degrees C, the oxygen pressure at half saturation (p50) was measured to be 12.4 +/- 0.2 and 139 +/- 4 torr for hemoglobin gels prepared in the absence and presence of the strong allosteric effectors inositol hexaphosphate and bezafibrate, respectively. Both values are in excellent agreement with those found for the binding of the first oxygen to hemoglobin in solution under similar experimental conditions. The corresponding Hill coefficients of hemoglobin gels were 0.94 +/- 0.02 and 0.93 +/- 0.03, indicating, in the frame of the Monod, Wyman, and Changeux model, that high and low oxygen-affinity tertiary T-state conformations have been isolated in a pure form. The values, slightly lower than unity, reflect the different oxygen affinity of alpha- and beta-hemes. Significantly, hemoglobin encapsulated in the presence of the weak effector phosphate led to gels that show intermediate oxygen affinity and Hill coefficients of 0.7 to 0.8. The heterogeneous oxygen binding results from the presence of a mixture of the high and low oxygen-affinity T states. The Bohr effect was measured for hemoglobin gels containing the pure conformations and found to be more pronounced for the high-affinity T state and almost absent for the low-affinity T state. These findings indicate that the functional properties of the T quaternary state result from the contribution of two distinct, interconverting conformations, characterized by a 10-fold difference in oxygen affinity and a different extent of tertiary Bohr effect. The very small degree of T-state cooperativity observed in solution and in the crystalline state might arise from a ligand-induced perturbation of the distribution between the high- and low-affinity T-state conformations.  相似文献   

16.
The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its interactions with heterotropic allosteric effectors. In their absence, hemoglobin is a high affinity, moderately cooperative O(2) carrier of limited functional flexibility, the behaviors of which are regulated by the homotropic, O(2)-linked T/R quaternary structural transition of the Monod-Wyman-Changeux/Perutz model. However, the interactions with allosteric effectors provide such "inert" hemoglobin unprecedented magnitudes of functional diversities not only of physiological relevance but also of extreme nature, by which hemoglobin can behave energetically beyond what can be explained by the Monod-Wyman-Changeux/Perutz model. Thus, the heterotropic effector-linked tertiary structural changes rather than the homotropic ligation-linked T/R quaternary structural transition are energetically more significant and primarily responsible for modulation of functions of hemoglobin.  相似文献   

17.
To determine the speed of communication between protein subunits, time-resolved absorption spectra were measured following partial photodissociation of the carbon monoxide complex of hemoglobin. The experiments were carried out using linearly polarized, 10-ns laser pulses, with the polarization of the excitation pulse both parallel and perpendicular to the polarization of the probe pulse. The substantial contribution to the observed spectra from photoselection effects was eliminated by isotropically averaging the polarized spectra, allowing a detailed comparison of the kinetics as a function of the degree of photolysis. These results show that prior to 1 microsecond both geminate ligand rebinding and conformational relaxation are independent of the number of ligands dissociated from the hemoglobin tetramer, as expected for a two-state allosteric model. After this time the kinetics depend on the ligation state of the tetramer. The conformational relaxation at 10 microseconds can be interpreted in terms of the two-state allosteric model as arising from the R to T quaternary conformational change of both unliganded and singly liganded molecules. These results suggest that communication between subunits requires about 1 microsecond and that the mechanism of the communication which occurs after this time is via the R to T conformational change. The optical anisotropy provides a novel means of accurately determining the extinction coefficients of the transient photoproduct. The decay in the optical anisotropy, moreover, provides an accurate determination of the rotational correlation time of 36 +/- 3 ns.  相似文献   

18.
Carbonmonoxy hemoglobin Ypsilanti (beta 99 Asp-Tyr) exhibits a quaternary form distinctly different from any structures previously observed for human hemoglobins. The relative orientation of alpha beta dimers in the new quaternary form lies well outside the range of values observed for normal unliganded and liganded tetramers (Baldwin, J., Chothia, C., J. Mol. Biol. 129:175-220, 1979). Despite this large quaternary structural difference between carbonmonoxy hemoglobin Ypsilanti and the two canonical structures, the new quaternary structure's hydrogen bonding interactions in the "switch" region, and packing interactions in the "flexible joint" region, show noncovalent interactions characteristic of the alpha 1 beta 2 contacts of both unliganded and liganded normal hemoglobins. In contrast to both canonical structures, the beta 97 histidine residue in carbonmonoxy hemoglobin Ypsilanti is disengaged from quaternary packing interactions that are generally believed to enforce two-state behavior in ligand binding. These features of the new quaternary structure, denoted Y, may therefore be representative of quaternary states that occur transiently along pathways between the normal unliganded, T, and liganded, R, hemoglobin structures.  相似文献   

19.
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

20.
Understanding mechanisms in cooperative proteins requires the analysis of the intermediate ligation states. The release of hydrogen ions at the intermediate states of native and chemically modified hemoglobin, known as the Bohr effect, is an indicator of the protein tertiary/quaternary transitions, useful for testing models of cooperativity. The Bohr effects due to ligation of one subunit of a dimer and two subunits across the dimer interface are not additive. The reductions of the Bohr effect due to the chemical modification of a Bohr group of one and two alpha or beta subunits are additive. The Bohr effects of monoliganded chemically modified hemoglobins indicate the additivity of the effects of ligation and chemical modification with the possible exception of ligation and chemical modification of the alpha subunits. These observations suggest that ligation of a subunit brings about a tertiary structure change of hemoglobin in the T quaternary structure, which breaks some salt bridges, releases hydrogen ions, and is signaled across the dimer interface in such a way that ligation of a second subunit in the adjacent dimer promotes the switch from the T to the R quaternary structure. The rupture of the salt bridges per se does not drive the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号