首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ants, individuals live in tightly integrated units (colonies) and work collectively for its success. In such groups, stable intraspecific variation in behaviour within or across contexts (personality) can occur at two levels: individuals and colonies. This paper examines how colony size and nestmate density influence the collective exploratory behaviour of Formica fusca (Hymenoptera: Formicidae), in the laboratory. The housing conditions of the colonies were manipulated to vary the size of colonies and their densities under a fully factorial design. The results demonstrate the presence of colony behavioural repeatability in this species, and contrary to our expectations, colonies were more explorative on average when they were kept at lower nestmate densities. We also found that experimental colonies created from larger source colonies were more explorative, which conveys that a thorough understanding of the contemporary behaviour of a colony may require knowing its social history and how it was formed. Our results also convey that the colony size and nestmate density can have significant effects on the exploratory behaviour of ant colonies.  相似文献   

2.
Groups of animals possess phenotypes such as collective behaviour, which may determine the fitness of group members. However, the stability and robustness to perturbations of collective phenotypes in natural conditions is not established. Furthermore, whether group phenotypes are transmitted from parent to offspring groups with fidelity is required for understanding how selection on group phenotypes contributes to evolution, but parent–offspring resemblance at the group level is rarely estimated. We evaluated the repeatability, robustness to perturbation and parent–offspring resemblance of collective foraging aggressiveness in colonies of the social spider Anelosimus eximius. Among‐colony differences in foraging aggressiveness were consistent over time but changed if the colony was perturbed through the removal of individuals or via individuals’ removal and subsequent return. Offspring and parent colony behaviour were correlated at the phenotypic level, but only once the offspring colony had settled after being translocated, and the correlation overlapped with zero at the among‐colony level. The parent–offspring resemblance was not driven by a shared elevation but could be due to other environmental factors. The behaviour of offspring colonies in a common garden laboratory setting was not correlated with the behaviour of the parent colony nor with the same colony's behaviour once it was returned to the field. The phenotypes of groups represent a potentially important tier of biological organization, and assessing the stability and heritability of such phenotypes helps us better understand their role in evolution.  相似文献   

3.
The social niche specialization hypothesis predicts that repeated social interactions will generate social niches within groups, thereby promoting consistent individual differences in behaviour. Current support for this hypothesis is mixed, probably because the importance of social niches is dependent upon the ecology of the species. We test whether repeated interactions among group mates generate consistent individual differences in boldness in the social spider, Stegodyphus dumicola. In support of the social niche specialization hypothesis, we found that consistent individual differences in boldness increased with longer group tenure. Interestingly, these differences took longer to appear than in previous work suggesting this species needs more persistent social interactions to shape its behaviour. Recently disturbed colonies were shyer than older colonies, possibly reflecting differences in predation risk. Our study emphasizes the importance of the social environment in generating animal personalities, but also suggests that the pattern of personality development can depend on subtle differences in species'' ecologies.  相似文献   

4.
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 ‘average’ spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.  相似文献   

5.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

6.
The ability of group members to discriminate against foreigners is a keystone in the evolution of sociality. In social insects, colony social structure (number of queens) is generally thought to influence abilities of resident workers to discriminate between nestmates and non-nestmates. However, whether social origin of introduced individuals has an effect on their acceptance in conspecific colonies remains poorly explored. Using egg-acceptance bioassays, we tested the influence of social origin of queen-laid eggs on their acceptance by foreign workers in the ant Formica selysi. We showed that workers from both single- and multiple-queen colonies discriminated against foreign eggs from single-queen colonies, whereas they surprisingly accepted foreign eggs from multiple-queen colonies. Chemical analyses then demonstrated that social origins of eggs and workers could be discriminated on the basis of their chemical profiles, a signal generally involved in nestmate discrimination. These findings provide the first evidence in social insects that social origins of eggs interfere with nestmate discrimination and are encoded by chemical signatures.  相似文献   

7.
Army ant colonies do not have permanent nests but frequently move to new patches. Local food depletion is considered the ultimate cause of this nomadic behaviour, but the proximate causes are not well understood. We tested if and how patch departure time of the aboveground-hunting army ant Dorylus molestus under field conditions is influenced by food availability and nest attacks by predators. In the first food supplement experiment, colonies receiving additional food throughout an entire nest stay did not reside in their nests for longer periods than control colonies. However, the distances travelled by colonies after nest stays during which colonies obtained food were shorter than those before these nest stays, indicating that colonies do assess food availability and avoid moving too far away from patches of high food availability. In the second food supplement experiment, in which colonies were given even larger amounts of food in the second half of their nest stay to mimic a rich unpredictable food source that these highly polyphagous predators are likely to encounter sometimes, patch departure times likewise did not differ between treated and control colonies. Either patch departure time is independent of food availability or there is another, as yet unappreciated proximate cause of colony movements in this species which we were unable to control for in our field experiments. One possibility is that encounters between neighbouring colonies influence patch departure time. In the experiment on the effect of predation, colonies responded to simulated nest attacks by mammals by leaving nests almost instantaneously and thus much earlier than control colonies. Rapid nest evacuation is likely a response to minimize the probability of repeat attacks by predators which cannot be repelled in other ways. Future studies will be necessary to definitively determine whether food availability influences patch departure times and to elucidate the consequences of colony encounters.  相似文献   

8.
The presence or absence of social counterparts can be instrumental in shaping both individual and collective behaviors. Furthermore, factors of the social environment may safeguard individuals from environmental stressors. In the study reported here, we tested the effects of moving into a new habitat on the mean, variance, and repeatability of individual behavioral tendencies between two social contexts (isolated vs. in a social group). Using the arid social spider, Stegodyphus dumicola (Araneae: Eresidae), we tested whether individuals' boldness was influenced by either (i) their time spent in a social group or (ii) their latency since having moved into a new habitat. We found that the effect of moving into a new habitat on individuals' boldness depended on whether spiders entered the novel environment in isolation or as part of a social group. Spiders that experienced a habitat shift with a social group showed no change in their average boldness, whereas individuals that shifted environments in isolation showed an increase in their mean boldness. Interestingly, neither of these trends was influenced by the time which had elapsed since the habitat shift, suggesting that shifting habitats has a lasting effect on isolated spiders' behavioral tendencies. Finally, we assessed how time spent in a new environment influenced colonies' collective foraging behavior. Here, we found that the longer social groups remained in a new environment, the faster the group responded to prey. Taken together, our data demonstrate that the effects of shifting physical environments on individuals' boldness may depend on individuals' social context, and that group tenure is associated with subtle shifts in colonies' collective foraging behavior.  相似文献   

9.
Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony''s speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.  相似文献   

10.
Insect societies are complex systems, displaying emergent properties much greater than the sum of their individual parts. As such, the concept of these societies as single ‘superorganisms’ is widely applied to describe their organisation and biology. Here, we test the applicability of this concept to the response of social insect colonies to predation during a vulnerable period of their life history. We used the model system of house-hunting behaviour in the ant Temnothorax albipennis. We show that removing individuals from directly within the nest causes an evacuation response, while removing ants at the periphery of scouting activity causes the colony to withdraw back into the nest. This suggests that colonies react differentially, but in a coordinated fashion, to these differing types of predation. Our findings lend support to the superorganism concept, as the whole society reacts much like a single organism would in response to attacks on different parts of its body. The implication of this is that a collective reaction to the location of worker loss within insect colonies is key to avoiding further harm, much in the same way that the nervous systems of individuals facilitate the avoidance of localised damage.  相似文献   

11.
Reduced genetic diversity through inbreeding can negatively affect pathogen resistance. This relationship becomes more complicated in social species, such as social insects, since the chance of disease transmission increases with the frequency of interactions among individuals. However, social insects may benefit from social immunity, whereby individual physiological defenses may be bolstered by collective‐level immune responses, such as grooming or sharing of antimicrobial substance through trophallaxis. We set out to determine whether differences in genetic diversity between colonies of the subterranean termite, Reticulitermes flavipes, accounts for colony survival against pathogens. We sampled colonies throughout the United States (Texas, North Carolina, Maryland, and Massachusetts) and determined the level of inbreeding of each colony. To assess whether genetically diverse colonies were better able to survive exposure to diverse pathogens, we challenged groups of termite workers with two strains of a pathogenic fungus, one local strain present in the soil surrounding sampled colonies and another naïve strain, collected outside the range of this species. We found natural variation in the level of inbreeding between colonies, but this variation did not explain differences in susceptibility to either pathogen. Although the naïve strain was found to be more hazardous than the local strain, colony resistance was correlated between two strains, meaning that colonies had either relatively high or low susceptibility to both strains regardless of their inbreeding coefficient. Overall, our findings may reflect differential virulence between the strains, immune priming of the colonies via prior exposure to the local strain, or a coevolved resistance toward this strain. They also suggest that colony survival may rely more upon additional factors, such as different behavioral response thresholds or the influence of a specific genetic background, rather than the overall genetic diversity of the colony.  相似文献   

12.
Theory predicts that altruism is only evolutionarily stable if it is preferentially directed towards relatives, so that any such behaviour towards seemingly unrelated individuals requires scrutiny. Queenless army ant colonies, which have anecdotally been reported to fuse with queenright foreign colonies, are such an enigmatic case. Here we combine experimental queen removal with population genetics and cuticular chemistry analyses to show that colonies of the African army ant Dorylus molestus frequently merge with neighbouring colonies after queen loss. Merging colonies often have no direct co-ancestry, but are on average probably distantly related because of overall population viscosity. The alternative of male production by orphaned workers appears to be so inefficient that residual inclusive fitness of orphaned workers might be maximized by indiscriminately merging with neighbouring colonies to increase their reproductive success. We show that worker chemical recognition profiles remain similar after queen loss, but rapidly change into a mixed colony Gestalt odour after fusion, consistent with indiscriminate acceptance of alien workers that are no longer aggressive. We hypothesize that colony fusion after queen loss might be more widespread, especially in spatially structured populations of social insects where worker reproduction is not profitable.  相似文献   

13.
Summary A new approach is presented to estimate the genetic variance of social behaviour of groups. Honeybees (Apis mellifera L.) are used as an example for highly social organisms. Most characters of economic importance strongly rely on collective group characters of honeybee colonies. The average relatedness between small groups of workers of one honeybee colony can be estimated using a discrete multinomial distribution. The genetic variance of a social behaviour (alarm behaviour) of groups of honeybee workers is estimated with the intraclass correlation between groups within a colony. In two populations tested, the coefficient of genetic determination was high (0.96–0.98) indicating that the metabolic bio-assay used was only weakly affected by environmental effects.  相似文献   

14.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

15.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

16.
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites'' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.  相似文献   

17.
The present study examines whether the nomadic social caterpillar Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae) can thermoregulate despite the lack of a tent, and evaluates the role of thermoregulation in directing the colony's behaviour. The presence of a radiant heat and light source (i.e. a lamp in the laboratory experiments and the sun in the field observations) enables caterpillar colonies to increase body temperature by basking (remaining still under a heat source) and this is only effective when caterpillars cluster in groups. Body temperatures achieved when basking in a group coincide with the temperatures at which the development rate is maximal for this species. Indeed, in the laboratory experiments, the presence of a lamp results in higher growth rates, confirming that thermoregulation is an advantage to group living. When a radiant heat/light source is provided at a distance from the food in the laboratory, caterpillars behave to maximize thermal gains: colonies move away from the food to bivouac (i.e. group together and remain still on a silk mat) under the lamp, spend more time on the bivouac and cluster in a more cohesive group. Thermal needs thus influence habitat selection and colony aggregation. Malacosoma disstria relies on developing rapidly, despite low seasonal temperatures, aiming to benefit from springtime high food quality and low predation rates; however, unlike others in its genus, it does not build a tent but instead exhibits collective nomadic foraging (i.e. the whole colony moves together between temporary resting and feeding sites). In this species, collective thermoregulatory behaviour is not only possible and advantageous, but also drives much of the colony's behaviour, in large part dictating the temporal and spatial patterns of movement. These findings suggest that thermoregulation may be an important selection pressure keeping colonies together.  相似文献   

18.
Many social species show variation in their social structure in response to different environmental conditions. For example, colonies of the yellowjacket wasp Vespula squamosa are typically headed by a single reproductive queen and survive for only a single season. However, in warmer climates, V. squamosa colonies sometimes persist for multiple years and can grow to extremely large size. We used genetic markers to understand patterns of reproduction and recruitment within these perennial colonies. We genotyped V. squamosa workers, pre‐reproductive queens, and males from perennial colonies in the southeastern United States at 10 polymorphic microsatellite loci and one mitochondrial DNA locus. We found that V. squamosa from perennial nests were produced by multiple reproductives, in contrast to typical annual colonies. Relatedness of nestmates from perennial colonies was significantly lower than relatedness of nestmates from annual colonies. Our analyses of mitochondrial DNA indicated that most V. squamosa perennial colonies represented semiclosed systems whereby all individuals belonged to a single matriline despite the presence of multiple reproductive females. However, new queens recruited into perennial colonies apparently mated with non‐nestmate males. Notably, perennial and annual colonies did not show significant genetic differences, supporting the hypothesis that perennial colony formation represents an instance of social plasticity. Overall, our results indicate that perennial V. squamosa colonies show substantial changes to their social biology compared to typical annual colonies and demonstrate variation in social behaviors in highly social species.  相似文献   

19.
Endothermic heat production is a crucial evolutionary adaptation that is, amongst others, responsible for the great success of honeybees. Endothermy ensures the survival of the colonies in harsh environments and is involved in the maintenance of the brood nest temperature, which is fundamental for the breeding and further development of healthy individuals and thus the foraging and reproduction success of this species. Freshly emerged honeybees are not yet able to produce heat endothermically and thus developed behavioural patterns that result in the location of these young bees within the warm brood nest where they further develop and perform tasks for the colony. Previous studies showed that groups of young ectothermic honeybees exposed to a temperature gradient collectively aggregate at the optimal place with their preferred temperature of 36°C but most single bees do not locate themselves at the optimum. In this work we further investigate the behavioural patterns that lead to this collective thermotaxis. We tested single and groups of young bees concerning their ability to discriminate a local from a global temperature optimum and, for groups of bees, analysed the speed of the decision making process as well as density dependent effects by varying group sizes. We found that the majority of tested single bees do not locate themselves at the optimum whereas sufficiently large groups of bees are able to collectively discriminate a suboptimal temperature spot and aggregate at 36°C. Larger groups decide faster than smaller ones, but in larger groups a higher percentage of bees may switch to the sub-optimum due to crowding effects. We show that the collective thermotaxis is a simple but well evolved, scalable and robust social behaviour that enables the collective of bees to perform complex tasks despite the limited abilities of each individual.  相似文献   

20.
Honeybees have an age-based division of labour that is influenced by genetic variability for the tendency to perform specific tasks. Individuals in a honeybee colony comprise diverse genotypes and their interactions can influence task allocation. Colonies from an African race (Africanized honeybees, AHB, Apis mellifera scutellata Ruttner) usually produce a much stronger defensive response than do European races of honeybees (EHB), and these races may differ in how individuals are allocated to the tasks of guarding and stinging. We observed guarding behaviour in colony environments that varied in proportions of genotypes (AHB, EHB) and population size. In large colonies, AHB showed much greater guarding persistence (number of days guarding) than EHB; hybrids were intermediate. In another series of experiments, three families each of AHB and EHB were cofostered in colonies with different AHB: EHB ratios, then tested in large and small colonies. In colonies of both sizes, colony environment interacted with both famly and type (AHB or EHB) for propensity to guard. Individuals of both types guarded more persistently in large colonies, but family and type both interacted with environment. EHB were more likely to initiate guarding bouts in low-AHB colonies, but persistence did not change with environment. AHB were insensitive to effects of environment for the tendency to initiate guarding behaviour, but were more persistent in high-AHB environments. EHB and AHB may differ in how they allocate individuals to guarding. The positive reinforcement of behaviour that occurs in high-defensive environments and in large populations could cause a stronger stinging response through alarm pheromone recruitment. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号