首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli tRNAPhe was modified at its 3-(3-amino-3-carboxypropyl)uridine residue with the N-hydroxysuccinimide ester of N-4-azido-2-nitrophenyl)glycine. Exclusive modification of this base was shown by two-dimensional TLC analysis of the T1 oligonucleotide and nucleoside products of nuclease digestion. The fully modified tRNA could be aminoacylated to the same level as control tRNA. The aminoacylated tRNA was as active as control tRNA in non-enzymatic binding to the P site of ribosomes, and in EFTu-dependent binding to the rirobosomal A site. The functional activity of this photolabile modified tRNA allows it to be used to probe the A and P binding sites on ribosomes and on other proteins that interact with tRNA. Crosslinking to the ribosomal P site has been shown.  相似文献   

2.
The mechanism of uridine transport in Escherichia coli B cells was studied using experimental approaches designed to limit possible ambiguities in interpretation of data obtained previously. For this purpose, the transport of [2-14C]uridine and [U-14C]uridine was determined in E. coli B and an E. coli B mutant which is resistant to the inhibitory effects of the nucleoside antibiotic, showdomycin.The majorty of the uridine transported as the intact nucleoside is cleaved to uracil and ribose l-phosphate. The uracil, in large part, is excreted, while ribose l-phosphate is retained. In addition, uridine is also rapidly cleaved to uracil and ribose l-phosphate in the periplasmic space. The uracil moiety may enter the cell, whereas ribose l-phosphate is not transported. The showdomycin-resistant mutant transports the intact nucleoside inefficiently, or not at all, but retains its ability to convert uridine to uracil in the periplasmic space.  相似文献   

3.
A method of `fingerprinting' high-molecular-weight 32P-labelled RNA species, using a two-dimensional thin-layer-chromatographic separation of ribonuclease T1 digestion products, has been applied to RNA from the Escherichia coli bacteriophage R17. The `fingerprinting' technique, besides giving a unique pattern that can be used as a characterization of the RNA, has made it possible to isolate a number of the larger oligonucleotides and to determine their nucleotide sequences.  相似文献   

4.
The identification of benzimidazole incorporated into RNA of Escherichia coli as benzimidazole nucleoside by means of mass spectrometry is reported. Trimethylsilylation of an enzymatic digest of bacterial RNA allowed the separation of the different nucleosides by gas chromatography. The coupled mass spectrometer was used as a mass specific detector and allowed the sensitive detection of single components of the complex mixture. Thus, benzimidazole ribonucleoside could be detected in hydrolysates of RNA from E. coli fed benzimidazole in the culture broth, although this nucleoside could not be completely separated from uridine by the gas chromatographic systems explored. Quantitation of the benzimidazole nucleoside content revealed that benzimidazole is incorporated into RNA amounting to 16% relative to adenosine.  相似文献   

5.
Natural and modified purine nucleosides have been synthesized using the recombinant thermostable enzymes purine nucleoside phosphorylase II (E. C. 2.4.2.1) and pyrimidine nucleoside phosphorylase (E. C. 2.4.2.2) from Geobacillus stearothermophilus B-2194. The enzymes were produced in recombinant E. coli strains and covalently immobilized on aminopropylsilochrom AP-CPG-170 after heating the cell lysates and the removal of coagulated thermolabile proteins. The resulting preparations of thermostable nucleoside phosphorylases retained a high activity after 20 reuses in nucleoside transglycosylation reactions at 70–75°C with a yield of the target products as high as 96%. Owing to the high catalytic activity, thermal stability, the ease of application, and the possibility of repeated use, the immobilized preparations of thermostable nucleoside phosphorylases are suitable for the production of pharmacologically important natural and modified nucleosides.  相似文献   

6.
Ero R  Peil L  Liiv A  Remme J 《RNA (New York, N.Y.)》2008,14(10):2223-2233
In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem–loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m3Ψ) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Ψ1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated pseudouridine in bacteria described to date.  相似文献   

7.
We describe a method for obtaining radioactive fingerprints from nonradioactive ribonucleic acid. Fragments derived by T1 ribonuclease digestion of RNA are dephosphorylated with bacterial alkaline phosphatase. When these fragments are used as primers for the reaction of primer dependent polynucleotide phosphorylase with [α-32P]GDP in the presence of T1 ribonuclease the 3′-hydroxyl group of each fragment becomes phosphorylated. The degree of phosphorylation is reasonably uniform. The method has been applied to T1 ribonuclease digests of Escherichia coli tRNAMetf; the oligonucleotides were further analyzed by spleen phosphodiesterase digestion. In a similar manner fingerprints of pancreatic ribonuclease digests of RNA can be obtained, when [α-32P]UDP, polynucleotide phosphorylase and pancreatic ribonuclease are used.  相似文献   

8.
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the preferred species. However, neither the function(s) nor the number of metal ions involved in catalysis is known. To gain information on metal ion involvement in catalysis, the rate of cleavage of the model substrate R1.1 RNA was determined as a function of Mg2+ concentration. Single-turnover conditions were applied, wherein phosphodiester cleavage was the rate-limiting event. The measured Hill coefficient (nH) is 2.0 ± 0.1, indicative of the involvement of two Mg2+ ions in phosphodiester hydrolysis. It is also shown that 2-hydroxy-4H-isoquinoline-1,3-dione—an inhibitor of ribonucleases that employ two divalent metal ions in their catalytic sites—inhibits E.coli RNase III cleavage of R1.1 RNA. The IC50 for the compound is 14 μM for the Mg2+-supported reaction, and 8 μM for the Mn2+-supported reaction. The compound exhibits noncompetitive inhibitory kinetics, indicating that it does not perturb substrate binding. Neither the O-methylated version of the compound nor the unsubstituted imide inhibit substrate cleavage, which is consistent with a specific interaction of the N-hydroxyimide with two closely positioned divalent metal ions. A preliminary model is presented for functional roles of two divalent metal ions in the RNase III catalytic mechanism.  相似文献   

9.
10.
Inverted repeat DNA was isolated from HeLa cell nuclei and transcribed in vitro with Escherichia coli RNA polymerase in the presence of [alpha-32P]nucleoside triphosphates. The RNA products were digested with T1 ribonuclease and subjected to separation in two dimensions. The pattern of the prominent oligonucleotides was almost indistinguishable from that seen when the double-stranded regions from 32P-labeled HeLa cell heterogeneous nuclear RNA were fingerprinted in a similar manner. The sequences of several of the largest prominent T1 ribonuclease-generated oligonucleotides were determined and were found to agree with those isolated from the double-stranded heterogeneous nuclear RNA that migrated to the same positions in the fingerprints. The most prominent component of the inverted repeat DNA appears to be sequences that are transcribed into double-stranded regions in heterogeneous nuclear RNA molecules.  相似文献   

11.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

12.
13.
Early work onE. coli ribonuclease P led to the detailed characterization of the native enzyme, which culminated in the discovery and initial characterization of M1 RNA and the demonstration thatE. coli RNase P contains an essential RNA component.Abbreviations MB methylene blue - MN micrococcal nuclease - RNaseP ribonuclease P - M1 RNA ribonuclease P RNA  相似文献   

14.
Bacterial ribonuclease III (RNase III) belongs to the RNase III enzyme family, which plays a pivotal role in controlling mRNA stability and RNA processing in both prokaryotes and eukaryotes. In the Vibrio vulnificus genome, one open reading frame encodes a protein homologous to E. coli RNase III, designated Vv-RNase III, which has 77.9 % amino acid identity to E. coli RNase III. Here, we report that Vv-RNase III has the same cleavage specificity as E. coli RNase III in vivo and in vitro. Expressing Vv-RNase III in E. coli cells deleted for the RNase III gene (rnc) restored normal rRNA processing and, consequently, growth rates of these cells comparable to wild-type cells. In vitro cleavage assays further showed that Vv-RNase III has the same cleavage activity and specificity as E. coli RNase III on RNase III-targeted sequences of corA and mltD mRNA. Our findings suggest that RNase III-like proteins have conserved cleavage specificity across bacterial species.  相似文献   

15.
After the incubation of reovirus replicase reaction mixtures (containing labeled ribonucleoside triphosphates), partially double-stranded ribonucleic acid (pdsRNA) products were isolated by cellulose column chromatography followed by precipitation with 2 m NaCl. The pulse-labeled reaction product contained a significantly large amount of pdsRNA that became complete dsRNA as reaction time increased, indicating that pdsRNA was an intermediate of the replicase reaction. The newly synthesized RNA strand (3H-labeled) of the pdsRNA was resistant to ribonuclease digestion, suggesting that single-stranded RNA regions were part of a preexistent unlabeled RNA template. These observations, together with the electrophoretic behavior of the pdsRNA in polyacrylamide gel, are consistent with the hypothesis that dsRNA is synthesized by the elongation of a complementary RNA strand upon a preexistent template of single-stranded RNA (i.e., messenger RNA). The direction of the RNA strand elongation was determined by carrying out the replicase reaction in the presence of 3H-cytidine triphosphate (or 3H-uridine triphosphate) and adenine triphosphate-α-32P followed by a chase with excess unlabeled cytidine triphosphate (or uridine triphosphate). The dsRNA product was digested with T1 ribonuclease and the resulting 3′-terminal fragments were isolated by chromatography on a dihydroxyboryl derivative of cellulose. Examination of the ratio of 3H to 32P in these fragments indicated that RNA synthesis proceeded from the 5′ to 3′ terminus.  相似文献   

16.
Reaction of the affinity-labeling reagent N-bromoacetyl-[14C]phenylalanyl-tRNA with Escherichia coli ribosomes results in covalent labeling of 23 S ribosomal RNA in addition to the previously reported labeling of ribosomal proteins. The reaction with the 23 S RNA is absolutely dependent on the presence of messenger RNA. Covalent attachment of the affinity label to 23 S RNA was demonstrated by its integrity in strongly dissociating solvents, and the conversion of the labeled material to small oligonucleotides by ribonuclease treatment. After digestion of labeled 23 S RNA with T1 ribonuclease, the radioactivity is found mainly in two oligonucleotide fragments. These results support models in which both ribosomal RNA and ribosomal protein contribute to the structure of the region of the ribosome surrounding the peptidyl transferase center.  相似文献   

17.
Abstract

5-Fluorouridine (5-FUrd) is a precursor of the widely used antitumor drug doxifluridine. We have produced 5-FUrd by biotransformation by cloning the gene encoding pyrimidine nucleoside phosphorylase (PyNPase) from Enterobacter aero-genes CMCC (B) 45103 and expression in Escherichia coli BL21 (DE3), resulting in recombinant E. coli BL21 (DE3)/ pET28a-PyNPase. After medium optimization, the PyNPase activity in the fermentation broth was 1613 U mg–1, which was 54-fold that of E. aerogenes. Under optimal conditions (cell concentration, 0.5 g L–1; uridine, 10 mM; 5-fluorouracil, 45 mM; temperature, 50°C; pH, 7.8), more than 90% of uridine was converted to 5-FUrd, suggesting that this is a valuable tool for application in the preparation of antiviral and antitumor drugs.  相似文献   

18.
Ribonuclease (RNase) mapping of modified nucleosides onto RNA sequences is limited by RNase availability. A codon-optimized gene for RNase U2, a purine selective RNase with preference for adenosine, has been designed for overexpression using Escherichia coli as the host. Optimal expression conditions were identified enabling generation of milligram-scale quantities of active RNase U2. RNase U2 digestion products were found to terminate in both 2′,3′-cyclic phosphates and 3′-linear phosphates. To generate a homogeneous 3′-linear phosphate set of products, an enzymatic approach was investigated. Bacteriophage lambda protein phosphatase was identified as the optimal enzyme for hydrolyzing cyclic phosphates from RNase U2 products. The compatibility of this enzymatic approach with liquid chromatography–tandem mass spectrometry (LC–MS/MS) RNA modification mapping was then demonstrated. RNase U2 digestion followed by subsequent phosphatase treatment generated nearly 100% 3′-phosphate-containing products that could be characterized by LC–MS/MS. In addition, bacteriophage lambda protein phosphatase can be used to introduce 18O labels within the 3′-phosphate of digestion products when incubated in the presence of H218O, allowing prior isotope labeling methods for mass spectrometry to include digestion products from RNase U2.  相似文献   

19.
A molecular construct of a spherical shape containing double-stranded RNA (dsRNA) in the center, coated by a spermidine-polyglucine coat, and carrying recombinant deltaferon—an analogue of recombinant interferon-gamma—has been designed. It is shown that deltaferon in this construct retains its specific activity at a level of 9 × 104 U/mg. It was found that deltaferon and dsRNA in the construct were characterized by enhanced resistance to proteases (trypsin) and nucleases (E. coli ribonuclease) as compared to free deltaferon and dsRNA. An increased resistance of deltaferon in the construct to environmental temperature during storage was also demonstrated.  相似文献   

20.
A method is described for the quantitative analysis and preparative isolation of N-[N-methyl-N-(9-β-ribofuranosylpurin-6-yl)carbamoyl]threonine (mt6A), a rare modified nucleoside constituent of transfer RNA. This method is based on the selective retention of mt6A and its parent compound, t6A, on Dowex-1 at pH 7.8, allowing these two nucleosides to be readily concentrated from the mixture of nucleosides resulting when tRNA is hydrolyzed by a combination of snake venom enzymes and E. coli alkaline phosphatase. The content of mt6A in wheat embryo and E. coli tRNA was found to be about 0.025 mole %, which is roughly one-tenth the t6A content of the tRNA of these two organisms. Since this indicates that only about 1 in 50 chains can contain a residue of mt6A, this nucleoside may be confined to a single isoaccepting species of transfer RNA in both E. coli and wheat embryo. No mt6A could be detected in either baker's or brewer's yeast tRNA by the method described. Either mt6A is entirely absent from yeast tRNA or it occurs in a form which does not adsorb to Dowex-1 during fractionation of hydrolysates of yeast tRNA. No t6A or mt6A could be detected in the 18 S + 26 S ribosomal ribonucleates of wheat embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号