首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
The rate, maximum extent of accumulation, and passive release of Ca2+ by mitochondria within Ehrlich ascites tumor cells treated with digitonin and by isolated tumor mitochondria have been compared. The mitochondrial protein content of Ehrlich cells was determined by cytochrome and cytochrome oxidase analyses. The Ca2+ uptake rate in situ is approximately one-half the rate in vitro whereas maximum Ca2+ accumulation by mitochondria within the cell is about twice the value for isolated mitochondria. When isolated tumor mitochondria were supplemented with exogenous ATP the maximum uptake (approximately 3.0 μeq Ca2+/mg protein) was about the same as in situ. Adenine nucleotides retained in digitonized cells may account for the observed differences. The rate of uncoupler stimulated Ca2+ release from mitochondria within the cell (ca. 10 neq Ca2+/min · mg mitochondrial protein for Ca2+ loads up to 800 neq Ca2+/mg protein) agrees exceptionally well with previous estimates for isolated tumor mitochondria. Therefore the capacity for extensive Ca2+ accumulation without uncoupling and attenuation of Ca2+ efflux are virtually the same in the cell as in vitro.  相似文献   

2.
The inetic properties of exchangeable Ca2+ in isolated guinea-pig heart mitochondria were studied at 25°C in the presence of 0.9 mM free Mg2+, ATP, phosphate ions and 0.4 – 0.5 μM free Ca2+ using a 45Ca2+ exchange technique. The simplest system which was found to be consistent with the data was one in which two kinetically-distinct compartments of exchangeable Ca2+ are present in the mitochondria. In the presence of 6 mM Na and at 0.4 μM free Ca2+, the fractional transfer rates for the transport of Ca2+ from these compartments were found to be 0.6 and 0.05 min?1 and the quantities of exchangeable Ca2+ 0.04 and 0.2 μmol/g wet wt heart, respectively. The amount of 45Ca2+ exchanged increased when the concentration of inorganic phosphate was increased, and decreased slightly when the concentration of free Mg2+ was increased from 1 mM to 3 mM. The flux of Ca2+ across the boundaries of both compartments was inhibited by an increase in the concentration of extramitochondrial Na+. The contribution of mitochondrial Ca2+ to compartments of kinetically-distinct exchangeable Ca2+ observed in intact cardiac muscle is briefly discussed.  相似文献   

3.
Previous morphological studies of the mineralizing epiphysis suggested that some mitochondria were concerned with Ca2+ accumulation while others were associated with cellular energetics and metabolism. To determine if there was mitochondrial heterogeneity in chondrocytes of the epiphyseal growth plate, mitochondria were isolated from four different regions of the plate and subjected to continuous sucrose gradient centrifugation. Centrifugation of the organelles in a narrow density sucrose gradient (1.5–2.0 M) in the presence of inhibitors of Ca2+ transport (ruthenium red and 5,5′-dithiobis-(2-nitrobenzoic acid)) revealed that considerable heterogeneity existed. In the least calcified zone 20% of the mitochondria formed a low density band of low Ca2+ concentration (309 nmol/mg protein). Organelles isolated from more calcified tissue zones showed a concomitant increase in Ca2+ concentration (up to 5700 nmol/mg protein) as well as an increase in the total percentage of mitochondria sedimenting in 2.0 M sucrose. The banding patterns of mitochondria isolated from rachitic and hypertrophic cartilage were similar. In addition, similarities were also noted in the Ca2+ concentration and the cytochrome oxidase activities of mitochondria of these tissues. During recovery from the rachitic condition, there was a change in the density centrifugation characteristics of this tissue and a substantial increase was noted in the proportion of mitochondria sedimenting in 2.0 M sucrose. The Ca2+ concentration of mitochondria of this rapidly calcifying tissue suggested that the critical Ca2+ concentration necessary for initiation of the calcification mechanism was 4 μmol/mg protein.  相似文献   

4.
Calciphorin, the putative mitochondrial calcium ionophore from rat liver mitochondria, exhibits the inherent properties of the mitochondrial calcium transport system and is similar to the calf heart preparation reported earlier. The protein has a strong selectivity for Ca2+, and has a Kd for Ca2+ of 56.5 ± 6.6 μM and 13.9 ± 2.1 μM in organic extraction and flow dialysis experiments, respectively. Reduction of the contaminating lipids from 23 ± 6.5 to 1.73 ± 0. moles per mole protein does not alter the affinities, Ca2+/protein soichiometry or selectivity for Ca2+.  相似文献   

5.
BackgroundDisorders of mitochondrial Ca2+ homeostasis play a key role in the glutamate excitotoxicity of brain neurons. DS16570511 (DS) is a new penetrating inhibitor of mitochondrial Ca2+ uniporter complex (MCUC). The paper examines the effects of DS on the cultivated cortical neurons and isolated mitochondria of the rat brain.MethodsThe functions of neurons and mitochondria were examined using fluorescence microscopy, XF24 microplate-based сell respirometry, ion-selective microelectrodes, spectrophotometry, and polarographic technique.ResultsAt the doses of 30 and 45 μM, DS reliably slowed down the onset of glutamate-induced delayed calcium deregulation of neurons and suppressed their death. 30 μM DS caused hyperpolarization of mitochondria of resting neurons, and 45 μM DS temporarily depolarized neuronal mitochondria. It was also demonstrated that 30–60 μM DS stimulated cellular respiration. DS was shown to suppress Ca2+ uptake by isolated brain mitochondria. In addition, DS inhibited ADP-stimulated mitochondrial respiration and ADP-induced decrease in the mitochondrial membrane potential. It was found that DS inhibited the activity of complex II of the respiratory chain. In the presence of Ca2+, high DS concentrations caused a collapse of the mitochondrial membrane potential.ConclusionsThe data obtained indicate that, in addition to the inhibition of MCUC, DS affects the main energy-transducing functions of mitochondria.General significanceThe using DS as a tool for studying MCUC and its functional role in neuronal cells should be done with care, bearing in mind multiple effects of DS, a proper evaluation of which would require multivariate analysis.  相似文献   

6.
In vitro effects of toxaphene on Ca2+-ATPase activity and 45Ca2+-uptake were studied in mitochondrial fractions of heart, kidney and liver tissues of rat. Mitochondrial fractions were prepared by the conventional centrifugation method. Ca2+-ATPase activity was determined by measuring the inorganic phosphate liberated during ATP hydrolysis. Toxaphene inhibited Ca2+-ATPase in a concentration dependent manner in all the three tissues. Substrate activation kinetics, with heart, kidney and liver tissue fractions, revealed that toxaphene inhibited Ca2+-ATPase activity non-competetively by decreasing the maximum velocity of the enzyme without affecting the enzyme-substrate affinity. Toxaphene also inhibited mitochondrial 45Ca2+-uptake in the three selected tissues in a concentration dependent manner. These results indicate that toxaphene is an inhibitor of mitochondrial Ca2+-ATPase and calcium transport in heart, kidney and liver tissues of rat.  相似文献   

7.
The protective effect of cyclosporin A on the damage induced by Hg2+ in kidney mitochondria was studied. Cyclosporin, added in vitro at a concentration of 0.5 μM, reversed the deleterious effects of Hg2+ on transmembrane potential and Ca2+ accumulation. However, when injected in rats, together with Hg2+, cyclosporin failed to protect against Hg2+ poisoning. Due to the low activity of cyclophilin found in kidney mitochondria, it is proposed that the protection of cyclosprin in vitro must be extered through an independent mechanism different from its binding to cyclophilin.  相似文献   

8.
The effects of invivo administration in epinephrine on calcium uptake were measured in two preparations of heart mitochondria, intermyofibrillar (IMF) and subsarcolemmal (SSL) using either 45Ca2+ or murexide to follow calcium movement. The administration of either hormones resulted in an increased calcium uptake in both preparation of mitochondria subsequently isolated. This increase might be the consequence of the increased State 3 respiration, also evoked by hormones. The possibility is raised that the inotropic actions of glucagon and epinephrine might be partially mediated by mitochondria.  相似文献   

9.
Long-chain saturated monocarboxylic fatty acids can induce nonspecific permeability of the inner membrane (open pores) of liver mitochondria loaded with Ca2+ or Sr2+ by the mechanism insensitive to cyclosporin A. In this work we investigated the effect of their metabolites — α,ω-dioic (dicarboxylic) acids — as potential inducers of pore opening by a similar mechanism. It was established that the addition of α,ω-hexadecanedioic acid (HDA) at a concentration of 10–30 μM to liver mitochondria loaded with Ca2+ or Sr2+ leads to swelling of the organelles and release of these ions from the matrix. The maximum effect of HDA is observed at 50 μM Ca2+ concentration. Cyclosporin A at a concentration of 1 μM, previously added to the mitochondria, did not inhibit the observed processes. The calcium uniporter inhibitor ruthenium red, which blocks influx of Ca2+ and Sr2+ to the matrix of mitochondria, prevented HDA-induced swelling. The effect of HDA as inducer of swelling of mitochondria was compared with similar effects of α,ω-tetradecanedioic and α,ω-dodecanedioic acids whose acyl chains are two and four carbon atoms shorter than HDA, respectively. It was found that the efficiency of these α,ω-dioic acids decreases with reducing number of carbon atoms in their acyl chains. It was concluded that in the presence of Ca2+ or Sr2+ long-chain saturated α,ω-dioic acids can induce a cyclosporin A-insensitive permeability of the inner membrane (open pores) of liver mitochondria as well as their monocarboxylic analogs.  相似文献   

10.
Initial velocities of energy-dependent Ca++ uptake were measured by stopped-flow and dual-wavelength techniques in mitochondria isolated from hearts of rats, guinea pigs, squirrels, pigeons, and frogs. The rate of Ca++ uptake by rat heart mitochondria was 0.05 nmol/mg/s at 5 µM Ca++ and increased sigmoidally to 8 nmol/mg/s at 200 µM Ca++. A Hill plot of the data yields a straight line with slope n of 2, indicating a cooperativity for Ca++ transport in cardiac mitochondria. Comparable rates of Ca++ uptake and sigmoidal plots were obtained with mitochondria from other mammalian hearts. On the other hand, the rates of Ca++ uptake by frog heart mitochondria were higher at any Ca++ concentrations. The half-maximal rate of Ca++ transport was observed at 30, 60, 72, 87, 92 µM Ca++ for cardiac mitochondria from frog, squirrel, pigeon, guinea pig, and rat, respectively. The sigmoidicity and the high apparent Km render mitochondrial Ca++ uptake slow below 10 µM. At these concentrations the rate of Ca++ uptake by cardiac mitochondria in vitro and the amount of mitochondria present in the heart are not consistent with the amount of Ca++ to be sequestered in vivo during heart relaxation. Therefore, it appears that, at least in mammalian hearts, the energy-linked transport of Ca++ by mitochondria is inadequate for regulating the beat-to-beat Ca++ cycle. The results obtained and the proposed cooperativity for mitochondrial Ca++ uptake are discussed in terms of physiological regulation of intracellular Ca++ homeostasis in cardiac cells.  相似文献   

11.
The effects of spegazzinine, a dihydroindole alkaloid, on mitochondrial oxidative phosphorylation were studied.Spegazzinine inhibited coupled respiration and phosphorylation in rat liver mitochondria. The I50 was 120 μM. Uncouplers released the inhibition of coupled respiration. Arsenate-stimulated mitochondrial respiration was partially inhibited by spegazzinine. The stimulation of mitochondrial respiration by Ca2+ and the proton ejection associated with the ATP-dependent Ca2+ uptake were not affected by the alkaloid.Oxidative phosphorylation and the Pi-ATP exchange reaction of phosphorylating beef heart submitochondrial particles were strongly inhibited by spegazzinine (I50, 50 μM) while the ATP-dependent reactions, reduction of NAD+ by succinate and the pyridine nucleotides transhydrogenase were less sensitive (I50, 125 μM). Oxygen uptake by submitochondrial particles was not affected.The 2,4-dinitrophenol-stimulated ATPase activity of rat liver mitochondria was not affected by 300 μM spegazzinine, a concentration of alkaloid that completely inhibited phosphorylation. However, higher concentrations of spegazzinine did partially inhibit it. The ATPase activities of submitochondrial particles, insoluble and soluble ATPases were also partially inhibited by high concentrations of spegazzinine.The inhibitory properties of spegazzinine on energy transfer reactions are compared with those of oligomycin, aurovertin and dicyclohexylcarbodiimide. It is concluded that spegazzinine effects are very similar to the effects of aurovertin and that its site of action may be the same or near the site of aurovertin.  相似文献   

12.
《Life sciences》1997,60(20):PL289-PL294
Therapeutic concentrations of praziquantel produce a rapid and intense contraction of the human flatworm Schistosoma mansoni. As an action on ATPases responsible for calcium homeostasis arises as a possible explanation for the molecular mechanism of this effect, we tested here the effect of praziquantel on different preparations from male adult worms that were previously characterized for their content in (Na++K+)-ATPase and (Ca2+-Mg2+)ATPase activities from different origins. Concentrations as high as 100 μM praziquantel did not inhibit (Na++K+)-ATPase from tegument and carcass nor (Ca2+-Mg 2+)ATPase from heterogeneous (P1) and microsomal (P4) fractions. As 100 μM praziquantel was also without effect on calcium permeability of microsomal vesicles actively loaded with 45Ca2+, the present results discard three hypotheses recently raised for the mechanism of praziquantel-induced contraction of S. mansoni.  相似文献   

13.
Intracellular calcium release at fertilization in the sea urchin egg.   总被引:35,自引:0,他引:35  
Fertilization or ionophore activation of Lytechinus pictus eggs can be monitored after injection with the Ca-sensitive photoprotein aequorin to estimate calcium release during activation. We estimate the peak calcium transient to reach concentrations of 2.5–4.5 μM free calcium 45–60 sec after activation and to last 23? min, assuming equal Ca2+ release throughout the cytoplasm. Calcium is released from an intracellular store, since similar responses are obtained during fertilization at a wide range of external calcium concentrations or in zerocalcium seawater in ionophore activations. In another effort to estimate free calcium at fertilization, we isolated egg cortices, added back calcium quantitatively, and fixed for observation with a scanning electron microscope. In this way, we determined that the threshold for discharge of the cortical granules is between 9 and 18 μM Ca2+. Therefore, the threshold for the in vitro cortical reaction is about five times the amount of free calcium, assuming equal distribution in the egg. This result suggests that transient calcium release is confined to the inner subsurface of the egg.  相似文献   

14.
Saponin-permeabilised epithelial cells isolated by hyalurodinase incubation from chicken small intestine were used to study 45Ca uptake into intracellular stores. At low (6.7 · 10−7 M) free Ca2+ concentration most of the Ca2+ appears to be taken up into non-mitochondrial stores, whilst the mitochondria seem to play a major role at high (2 · 10−5 M) Ca2+ concentration. Addition of inositol triphosphate (IP3) causes a rapid and reversible release of 45Ca from non-mitochondrial stores, with a half-maximal effect of approximately 1 μM.  相似文献   

15.
The effect of ammonia and calcium on the activity of monoamine oxidase (MAO) was studied. The enzyme activity in nonsynaptic brain mitochondria isolated from the rats treated with ammonium acetate was estimated from the release of H2O2using spectrophotometry. The effect of calcium on MAO was assayed directly after adding Ca2+to the nonsynaptic mitochondria isolated from the forebrain of control rats. Both ammonium acetate injectionin vivoand Ca2+additionin vitrostimulated the activity of MAO A but not that of MAO B in mitochondria. This is the first evidence for ammonia and Ca2+regulation of MAO A in the forebrain nonsynaptic mitochondria and for their contribution to oxidative stress in the neurons via MAO A activation.  相似文献   

16.
Previous morphological studies of the mineralizing epiphysis suggested that some mitochondria were concerned with Ca2+ accumulation while others were associated with cellular energetics and metabolism. To determine if there was mitochondrial heterogeneity in chondrocytes of the epiphyseal growth plate, mitochondria were isolated from four different regions of the plate and subjected to continuous sucrose gradient centrifugation. Centrifugation of the organelles in a narrow density sucrose gradient (1.5–2.0 M) in the presence of inhibitors of Ca2+ transport (ruthenium red and 5,5′-dithiobis-(2-nitrobenzoic acid)) revealed that considerable heterogeneity existed. In the least calcified zone 20% of the mitochondria formed a low density band of low Ca2+ concentration (309 nmol/mg protein). Organelles isolated from more calcified tissue zones showed a concomitant increase in Ca2+ concentration (up to 5700 nmol/mg protein) as well as an increase in the total percentage of mitochondria sedimenting in 2.0 M sucrose. The banding patterns of mitochondria isolated from rachitic and hypertrophic cartilage were similar. In addition, similarities were also noted in the Ca2+ concentration and the cytochrome oxidase activities of mitochondria of these tissues. During recovery from the rachitic condition, there was a change in the density centrifugation characteristics of this tissue and a substantial increase was noted in the proportion of mitochondria sedimenting in 2.0 M sucrose. The Ca2+ concentration of mitochondria of this rapidly calcifying tissue suggested that the critical Ca2+ concentration necessary for initiation of the calcification mechanism was 4 μmol/mg protein.  相似文献   

17.
《BBA》1986,850(1):49-56
Mitochondria isolated from corn (Zea mays L.) coleoptiles by an improved procedure which yields functionally intact preparations are much more active in respiration-coupled Ca2+ accumulation than those employed in most earlier studies. Ca2+ uptake by these mitochondria is phosphate-dependent and is accompanied by decrease in Δψ, H+ extrusion and increase in the rate of respiration. A sigmoidal plot with a Hill coefficient of 2.22 was obtained when the rates of Ca2+ uptake were plotted as a function of free Ca2+ concentration. The K0.5 for Ca2+ influx was about 31 μM and a Vmax of 140 nmol Ca2+ per min per mg was attained at a free-Ca2+ concentration of about 120 μM. Ca2+ uptake is sensitive to inhibition by ruthenium red and Mg2+. The external free-Ca2+ concentration maintained at steady state was about 2 μM and was independent of the respiratory substrate and of external Na+, but was increased by exogenous Mg2+. In addition, this preparation of corn mitochondria has shown a much higher ability for Ca2+ retention in the presence of phosphate and NAD(P)H oxidants than liver mitochondria.  相似文献   

18.
The effects of different Ca2+ concentrations on winter wheat (Triticum aestivum L.) functioning and cytochrome c release after organelle incubation with cold-shock protein with a mol. wt of 310 kD or after cold shock were studied. Low (1–5 μM) and high (25–50 μM) Ca2+ concentrations inhibited mitochondrial respiration in control seedlings, whereas 10 μM Ca2+ enhanced respiration in state 4 and reduced indices characterizing coupling (respiratory control (RC) and ADP: O ratio). At concentrations of 6–20 and 50 μM, Ca2+ ions suppressed CSP310 uncoupling effect, which reduced the rate of respiration and an increase in the RC and ADP: O ratio. Low-temperature stress and exogenous CSP310 induced cytochrome c leakage from winter wheat mitochondria both in the absence of Ca2+ and in the presence of its low concentrations.  相似文献   

19.
  • 1.1. Cadmium (Cd) and zinc (Zn) were inhibitory to calcium uptake by isolated gills of Fundulus heteroclitus in vitro. The metals appeared to act by displacing Ca2+ ions from protein carriers involved in facilitated diffusion.
  • 2.2. In saltwater fish, transport of calcium across the serosal membrane of gill chloride cells is partly energy dependent and is likely mediated by Ca2+-ATPase. However, much of the calcium transport through the gill epithelium appears to occur by passive processes.
  • 3.3. Cd (10−5M—10−3M) and Zn (10−7M—10−3 M) inhibited calcium uptake by isolated scale patches incubated in a physiological saline.
  • 4.4. Cyanide, oubain, and quercetin treatment of scale patches produced results similar to those of the Cd and Zn treatments suggesting that metal-induced inhibition of ATPases may be responsible for reduced calcium transport by scale osteoblasts.
  相似文献   

20.
A study of the intracellular transport of calcium in rat heart   总被引:4,自引:0,他引:4  
The distribution of in vivo injected 45Ca++ in the subcellular fractions of rat heart has been studied. Most of the radioactivity of the cell was found to be associated with the subcellular organelles; only a small fraction was recovered in the soluble phase. Mitochondria contained the greatest part of the total radioactivity associated with the subcellular organelles. After injection of 45Ca++ the specific activity of the mitochondrial calcium pool was several times higher than that of the calcium of the sarcoplasmic reticulum. Pentachlorophenol has been administered to rats to uncouple oxidative phosphorylation in heart mitochondria in vivo and its effect on the distribution of 45Ca++ in the heart studied. Under these conditions, it has been found that mitochondria contained much less 45Ca++ than the controls; this decrease was paralleled by an increase of the radioactivity associated with the microsomes and with the final supernatant. Experiments in which 45Ca++ was added to heart homogenates at 0° indicated that 45Ca++ also became bound to mitochondria and the other subcellular structures at 0°. However, PCP had no effect on the distribution of radioactivity among the subcellular fractions under these conditions. The results suggest that (1) energy-linked movements of Ca++ take place in mitochondria of the intact rat heart, (2) a part of the uptake of 45Ca++ by mitochondria does not depend on metabolism, and, (3) the movements of Ca++ in heart mitochondria in vivo are probably more active than those in the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号