首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH, encoding the heat shock-specific sigma factor σ32, was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

2.
3.
4.
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37°C to 15°C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3′-to-5′ exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3′-to-5′ exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3′-to-5′ processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Δpnp cells has consequences, such as accumulation of ribosomal subunits in the Δpnp cells, which may play a role in the cold sensitivity of this strain.  相似文献   

5.
6.
7.
8.
The filamentous phage fd uses its gene 3 protein (G3P) to target Escherichia coli cells in a two-step process. First, the N2 domain of G3P attaches to an F pilus, and then the N1 domain binds to TolA-C. N1 and N2 are tightly associated, rendering the phage robust but noninfectious because the binding site for TolA-C is buried at the domain interface. Binding of N2 to the F pilus initiates partial unfolding, domain disassembly, and prolyl cis-to-trans isomerization in the hinge between N1 and N2. This activates the phage, and trans-Pro213 maintains this state long enough for N1 to reach TolA-C. Phage IF1 targets I pili, and its G3P contains also an N1 domain and an N2 domain. The pilus-binding N2 domains of the phages IF1 and fd are unrelated, and the N1 domains share a 31% sequence identity. We show that N2 of phage IF1 mediates binding to the I pilus, and that N1 targets TolA. Crystallographic and NMR analyses of the complex between N1 and TolA-C indicate that phage IF1 interacts with the same site on TolA-C as phage fd. In IF1-G3P, N1 and N2 are independently folding units, however, and the TolA binding site on N1 is permanently accessible. Activation by unfolding and prolyl isomerization, as in the case of phage fd, is not observed. In IF1-G3P, the absence of stabilizing domain interactions is compensated for by a strong increase in the stabilities of the individual domains. Apparently, these closely related filamentous phages evolved different mechanisms to reconcile robustness with high infectivity.  相似文献   

9.
10.
11.
12.
13.
14.
Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.  相似文献   

15.
16.
17.
18.
Single-copy gene fusions between the lacZ reporter gene and Escherichia coli strains containing promoters induced by cold shock (cspA), cytoplasmic stress (ibp), or protein misfolding in the cell envelope (P3rpoH) were constructed and tested to determine their ability to detect antibacterial agents while simultaneously providing information on their cellular targets. Antibiotics that affect prokaryotic ribosomes selectively induced the cspA::lacZ or ibp::lacZ gene fusion, depending on their mode of action. The membrane-damaging peptide polymyxin B induced both the P3rpoH::lacZ and ibp::lacZ fusions, while the β-lactam antibacterial agent carbenicillin activated only the P3rpoH promoter. Nalidixic acid, a compound that causes DNA damage, downregulated β-galactosidase synthesis from P3rpoH but had little effect on expression of the reporter enzyme from either the cspA or ibp promoter. All model antibiotics could be identified over a wide range of sublethal concentrations with signal-to-noise ratios between 2 and 11. A blue halo assay was developed to rapidly characterize the modes of action of antibacterial agents by visual inspection, and this assay was used to detect chloramphenicol secreted into the growth medium of Streptomyces venezuelae cultures. This simple system holds promise for screening natural or combinatorial libraries of antimicrobial compounds.  相似文献   

19.
By replacing a native promoter with lac and tac promoters, the gene encoding an ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 was overexpressed in Escherichia coli. The EFE protein expressed by a multicopy plasmid accounted for more than 30% of the total cellular protein, resulting in ethylene-forming activities higher than 10 μl of ethylene (mg cell)−1h−1 in recombinant E. coli cells. However, most of the EFE protein accumulated as inactive inclusion bodies particularly at elevated temperatures (>30°C). We present an efficient procedure for reconstituting an active enzyme from inclusion bodies by solubilization with 8 M urea and dialysis. The reconstituted EFE has specific activity identical to that of the native enzyme from P. syringae, suggesting that the EFE protein has an intrinsic folding capability in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号