首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Increasing concerns over the effects of environmental estrogens on wildlife and humans have highlighted the need for screening systems to assess potentially estrogenic effects of test compounds. As a result, in vitro screening methods such as cell proliferation assays using the estrogen-responsive human breast cancer cell line, MCF-7, have been developed. The present study describes an alternative in vitro approach for the assessment of such xenoestrogens, based on estrogenic rescue of MCF-7 cells from antiestrogen-induced cytotoxicity. This method measures the ability of various estrogenic compounds to compete with a known estrogen-receptor-mediated antihormonal drug, 4-hydroxytamoxifen, using the 1-[4,5-dimethylthiazol-2-yl]-3,5-diphenylformazan (MTT) assay to assess mitochondrial activity. Because 4-hydroxytamoxifen treatment of cells results in a dramatic decrease in mitochondrial dehydrogenase activity which is directly related to their estrogen-receptor content, inhibition of this effect with estrogenic compounds represents an estrogen-receptor interaction, or estrogenic rescue. The estrogenic compounds tested include a weak xenoestrogen, bisphernol A (BPA), and two biological estrogens, 17α- and 17β-estradiol. Competitive inhibition of 4-hydroxytamoxifen-induced cytotoxicity by BPA was compared to that of the biological estrogens. The results indicate that the biological estrogens can successfully compete with the antiestrogen in a dose-dependent manner. In addition, the assay is sensitive enough to detect estrogenic rescue by even the very weak xenoestrogen, BPA, albeit at high BPA concentrations. This simple in vitro method could be used as an alternative or second-line screen for potential xenoestrogens.  相似文献   

2.
Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies.  相似文献   

3.
Estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) discharged from sewage treatment plants (STPs) into surface waters, are seen as a threat effecting aquatic life by its estrogenic character. Therefore, much research is conducted on the fate and removal of these compounds. Since these compounds are present in influents and effluents in the ng/l range, methods for detection deserve special attention. Most important processes that play a role in the removal of estrogens are: adsorption, aerobic degradation, anaerobic degradation, anoxic biodegradation and photolytic degradation. Halflifes tend to vary and are remarkably shorter when low initial concentrations are applied. In general anaerobic conditions result in longer halflifes then aerobic conditions. EE2 shows far most persistence of the compounds, thereby also the estrogenic effect in vitro is about 2–3-fold higher compared to E2. The three compounds show a higher affinity to sorb to sludge compared to other tested adsorption materials like sediment. Aerobic degradation is far the most efficient in removing these compounds, but adsorption seems to play a significant role in retaining the estrogens inside full-scale STPs. Removal rates in full scale plants depend on the HRT, SRT and loading rates, but lack of information on the exact dependency so far prevents an optimal design able to fully eliminate estrogens from wastewater.  相似文献   

4.
Environmental estrogenic compounds or xenoestrogens can mimic natural estrogens and cause a variety of adverse effects on aquatic wildlife. The purpose of the present work was to investigate if xenoestrogens are able to cause proliferation of liver peroxisomes using zebrafish (Danio rerio) as a model. Adult male zebrafish were exposed for 15 days to 17beta-estradiol (E2) and the xenoestrogens dibutylphthalate (DBP), methoxychlor (MXC), 4-tert-octylphenol (OP) and 17alpha-ethynylestradiol (EE2). All five tested compounds caused significant proliferation of liver peroxisomes (p < 0.05) as indicated by increased peroxisomal surface and numerical densities and elevated activities of the peroxisomal beta-oxidation enzyme acyl-CoA oxidase (AOX). In the case of DBP, MXC and E2, positive significant correlations between peroxisomal density parameters and AOX were found. The treatments did not produce gross alterations in testis histology, but spermatogenic cell proliferation was disturbed in E2 and EE2-treated groups and vitellogenin levels increased significantly in fish exposed to MXC, OP, EE2 and E2 with respect to controls. Furthermore, a significant correlation between vitellogenin levels and AOX activity was found for MXC, OP and EE2 treatments, suggesting that for the latter xenoestrogens early estrogenic effects are associated with liver peroxisome proliferation. No such association occurred with typical peroxisome proliferators such as DBP.  相似文献   

5.
Estrogenic activity has been detected in aquatic ecosystems across the world. However, there is a lack of such data for Slovenian wastewaters and surface waters. The Slovenian monitoring program of effluents discharged into surface waters does not require that emissions of natural and synthetic estrogens into aquatic environments be assessed and controlled. In our study, we assessed the potential estrogenicity of wastewater samples from three wastewater treatment plants using a yeast estrogen screen assay (YES assay). Due to the high inhibition of yeast growth in samples obtained during our first sampling period, it was impossible to detect any estrogenic activity. An additional silica gel clean-up step reduced the toxicity of samples collected during our second sampling period; as a result, we were able to record up to 95% relative estrogenic activity inhibition. Deconjugation of the estrogens did not significantly influence our results. We detected estrogenic activity using a YES assay in almost all influent and effluent samples tested, which suggests that the wastewater treatment plants (WWTPs) examined do not effectively remove (xeno)estrogens from wastewaters. Our results suggest that a YES assay is an appropriate screening method for monitoring estrogenic activity in effluents. However, prediction of the potential impacts of wastewater (xeno)estrogens on aquatic organisms require additional in vitro and in vivo assays.  相似文献   

6.
Occurrence, fate, and biodegradation of estrogens in sewage and manure   总被引:10,自引:0,他引:10  
The estrogens estrone (E1), 17α-estradiol (E2α), 17β-estradiol (E2β), and estriol (E3) are natural sex hormones produced by humans and animals. In addition, there are some synthetic estrogens, such as 17α-ethinylestradiol (EE2), used for contraception purposes. These compounds are able to produce endocrine disruption in living organisms at nanogram-per-liter levels. In both humans and animals, estrogens are excreted in urine and feces, reaching the natural environment through discharge from sewage treatment plants (STP) and manure disposal units. In STPs, hormone removal depends on the type of treatment process and on different parameters such as the hydraulic and sludge retention times. Thus, hormone elimination rates vary from 0% to 90% in different STPs. Animals are also an important source of estrogens in the environment. Indeed, animals produce high concentrations of hormones which will end up in manure which is typically spread on land. Hence, waste-borne animal hormones may transfer these pollutants to the soil. The purpose of this review is to highlight the significance for both health and the environment of pollution by estrogens and critically review the existing knowledge on their fate and removal in different treatment processes. Relevant information on the microbial degradation of hormones and metabolic pathways is also included.  相似文献   

7.
8.
Many estrogenic chemicals found in the environment (xenoestrogens) show a lower affinity for plasma estrogen binding proteins relative to the natural estrogens such as estradiol. These binding proteins, which include alphafetoprotein in rats and mice, sex hormone binding globulin in humans, and albumin in all species, regulate estrogen uptake into tissues. Therefore, the in vivo estrogenic potency relative to estradiol of xenoestrogens that show lower binding to these serum proteins will thus be underestimated in assays that compare the potency of xenoestrogens to estradiol and do not take serum binding into account. We have examined the effects of the binding components in serum on the uptake of a number of xenoestrogens into intact MCF-7 human breast cancer cells. Since most estrogenic chemicals are not available in radiolabeled form, their uptake is determined by competition with [3H]estradiol for binding to estrogen receptors (ER) in an 18-h assay. Serum modified access (SMA) of cell uptake of xenoestrogens is calculated as the RBA in serum-free-medium ÷ the RBA in serum, and the bioactive free fraction of xenoestrogen in serum is then also calculated. We predicted the concentration of two xenoestrogens, bisphenol A and octylphenol, required to alter development of the prostate in male mouse fetuses. Whereas octylphenol was predicted to be a more potent estrogen than bisphenol A when tested in serum-free medium, our assay predicted that bisphenol A would be over 500-times more potent than octylphenol in fetal mice. The finding that administration of bisphenol A at a physiologically relevant dose predicted from our in vitro assay to pregnant mice from gestation day 11 to 17 increased adult prostate weight in male offspring relative to controls (similar to the effect of estradiol), while the same doses of octylphenol did not alter prostate development, provided support for our hypothesis.  相似文献   

9.
Natural attenuation of estrogenic endocrine disrupting compounds (EDCs) such as estriol (E3, natural) and 17α-ethinylestradiol (EE2, synthetic) were evaluated in a designed ecologically engineered treatment system (EETS) along with domestic sewage. These two estrogens are the major contaminants of sewage and found to cause adverse effects on the endocrine system of humans and animals when exposed even in nanogram concentrations. The EETS consisted of three tanks containing diverse biota, viz., aquatic macrophytes, submerged plants, emergent plants, algae and bacteria present in the system mimic the natural cleansing functions of wetlands and help in the treatment of pollutants present in wastewater. During operation, 22 μg/l of E3 and EE2 were separately fed for 10 days each and operated in continuous mode (20 l/day). The floating macrophytes system (Tank 1) was more effective in removing estrogens [E3 - 61.77% (13.59 μg/l); EE2 - 69.09% (15.20 μg/l)] compared to the submerged-emergent macrophytes-based integrated system (Tank 2) [E3 - 16.58% (3.65 μg/l); EE2 - 18.52% (4.08 μg/l)] and submerged-rooted microphytes system (Tank 3) [E3 - 15.20%, (3.35 μg/l); EE2 - 7.72%, (1.70 μg/l)]. On the whole, EETS can effectively treat EDCs [E3 93.56% (20.59 μg/l); EE2 95.34% (20.97 μg/l)]. Removal of COD (68.06%), nitrates (60.02%) and turbidity (83.43%) was also observed simultaneously during EETS operation. The designed EETS is ecologically complex and mechanically simple and has very low energy consumption and function based on a natural cleansing mechanism (attenuation) with esthetic value.  相似文献   

10.
11.
12.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

13.
《Process Biochemistry》2010,45(2):284-287
Natural estrogens such as estrone, 17β-estradiol, estriol, and the synthetic component of contraceptive pills, 17α-ethinylestradiol, enter the municipal wastewater treatment plant via human excretions. A significant portion of these substances is found to remain in reject water produced after anaerobic digestion of activated sludge. In this study, the effect of the oxidant, Fe(III), and facultative anaerobic strain of iron-reducing bacteria on the anaerobic degradation of estrogens in reject water was investigated. Synthetic 17α-ethinylestradiol remained resistant to anaerobic biodegradation by iron-reducing bacteria, while natural estrogens such as 17β-estradiol, estriol, and estrone were removed by 92%, 60% and 27%, respectively, after 15 days of batch cultivation of iron-reducing bacteria in reject water with the addition of all estrogens to concentrations 100 μg l−1 each. The ability of facultative anaerobic iron-reducing bacteria to degrade estrogens can be used for the anaerobic removal of trace organics from reject water in municipal wastewater treatment plant.  相似文献   

14.
It has been proposed that tissue-specific estrogenic and/or antiestrogenic actions of certain xenoestrogens may be associated with alterations in the tertiary structure of estrogen receptor (ER) alpha and/or ERbeta following ligand binding; changes which are sensed by cellular factors (coactivators) required for normal gene expression. However, it is still unclear whether xenoestrogens affect the normal behavior of ERalpha and/or ERbeta subsequent to receptor binding. In view of the wide range of structural forms now recognized to mimic the actions of the natural estrogens, we have assessed the ability of ERalpha and ERbeta to recruit TIF2 and SRC-1a in the presence of 17beta-estradiol, genistein, diethylstilbestrol, 4-tert-octylphenol, 2',3',4', 5'-tetrachlorobiphenyl-ol, and bisphenol A. We show that ligand-dependent differences exist in the ability of ERalpha and ERbeta to bind coactivator proteins in vitro, despite the similarity in binding affinity of the various ligands for both ER subtypes. The enhanced ability of ERbeta (over ERalpha) to recruit coactivators in the presence of xenoestrogens was consistent with a greater ability of ERbeta to potentiate reporter gene activity in transiently transfected HeLa cells expressing SRC-1e and TIF2. We conclude that ligand-dependent differences in the ability of ERalpha and ERbeta to recruit coactivator proteins may contribute to the complex tissue-dependent agonistic/antagonistic responses observed with certain xenoestrogens.  相似文献   

15.
Metabolic activation of pesticides with proestrogenic activity   总被引:2,自引:0,他引:2  
The role of metabolism in the estrogenic activity of chlorinated hydrocarbon pesticides was examined. Whether the estrogenic activity in technical grade preparations of the pesticide methoxychlor is due to methoxychlor or to contaminants was also investigated. Identified compounds in technical methoxychlor were examined by an in vitro method to determine whether they are estrogens or proestrogens. This method showed that purified methoxychlor and MDDE, an olefinic derivative of methoxychlor, are proestrogens and that monohydroxymethoxychlor and monohydroxy-MDDE are estrogens. Thus, the estrogenic activity in technical methoxychlor is due to both methoxychlor and contaminants. MDDE is an in vivo metabolite of methoxychlor, and the mono- and bishydroxy derivatives of methoxychlor and MDDE are metabolites of methoxychlor and MDDE, respectively. These metabolites exhibited in vitro estrogenic activity in the following order of potency: bis-OH-MDDE greater than bis-OH-methoxychlor greater than mono-OH-MDDE greater than mono-OH-methoxychlor. A similar order of potency was observed in vivo, demonstrating that metabolites of methoxychlor are potent estrogens. In addition to phenolic products, hepatic monooxygenases metabolize methoxychlor and MDDE to reactive intermediates that bind covalently to microsomal proteins. Further studies are needed to determine the factors controlling the two pathways of methoxychlor metabolism and determine whether covalent binding is associated with cellular and organ toxicity.  相似文献   

16.
For the last 40 y, substantial evidence has surfaced on the hormone-like effects of environmental chemicals such as pesticides and industrial chemicals in wildlife and humans. The endocrine and reproductive effects of these chemicals are believed to be due to their ability to: (1) mimic the effect of endogenous hormones, (2) antagonize the effect of endogenous hormones, (3) disrupt the synthesis and metabolism of endogenous hormones, and (4) disrupt the synthesis and metabolism of hormone receptors. The discovery of hormone-like activity of these chemicals occurred long after they were released into the environment. Aviation crop dusters handling DDT were found to have reduced sperm counts, and workers at a plant producing the insecticide kepone were reported to have lost their libido, became impotent and had low sperm counts. Subsequently, experiments conducted in lab animals demonstrated unambiguously the estrogenic activity of these pesticides. Man-made compounds used in the manufacture of plastics were accidentally found to be estrogenic because they fouled experiments conducted in laboratories studying natural estrogens. For example, polystyrene tubes released nonylphenol, and polycarbonate flasks released bisphenol-A. Alkylphenols are used in the synthesis of detergents (alkylphenol polyethoxylates) and as antioxidants. These detergents are not estrogenic; however, upon degradation during sewage treatment they may release estrogenic alkylphenols. The surfactant nonoxynol is used as intravaginal spermicide and condom lubricant. When administered to lab animals it is metabolized to free nonylphenol. Bisphenol-A was found to contaminate the contents of canned foods; these tin cans are lined with lacquers such as polycarbonate. Bisphenol-A is also used in dental sealants and composites. We found that this estrogen leaches from the treated teeth into saliva; up to 950 μg of bisphenol-A were retrieved from saliva collected during the first hour after polymerization. Other xenoestrogens recently identified among chemicals used in large volumes are the plastizicers benzylbutylphthalate, dibutylphthalate, the antioxidant butylhydroxyanisole, the rubber additive p-phenylphenol and the disinfectant o-phenylphenol. These compounds act cumulatively. In fact, feminized male fish were found near sewage outlets in several rivers in the U.K.; a mixture of chemicals including alkyl phenols resulting from degradation of detergents during sewage treatment seemed to be the causal agent. Estrogen mimics are just a class of endocrine disruptors. Recent studies identified antiandrogenic activity in environmental chemicals such as vinclozolin, a fungicide, and DDE, and insecticide. Moreover, a single chemical may produce neurotoxic, estrogenic and antiandrogenic effects. It has been hypothesized that endocrine disruptors may play a role in the decrease in the quantity and quality of human semen during the last 50 y, as well as in the increased incidence of testicular cancer and cryptorchidism in males and breast cancer incidence in both females and males in the industrialized word. To explore this hypothesis it is necessary to identify putative causal agents by the systematic screening of environmental chemicals and chemicals present in human foods to assess their ability to disrupt the endocrine system. In addition, it will be necessary to develop methods to measure cumulative exposure to (a) estrogen mimics, (b) antiandrogens, and (c) other disruptors.  相似文献   

17.
The presence of estrone (E1), 17 beta-estradiol (E2) and 17 alpha-ethynylestradiol (EE2) in sewage treatment work (STW) effluent pose a potential risk to aquatic ecosystem. The objectives of this study were to evaluate the effectiveness of vertical-flow wetland as polishing step of conventional wastewater treatment in the removal of estrogens and to examine the effect of sand depth. The highest removal efficiency of 67.8 ± 28.0%, 84.0 ± 15.4% and 75.3 ± 17.6% for E1, E2 and EE2, respectively, was achieved by the shallowest wetland among three constructed wetlands with different filter layer depth (i.e. 7.5, 30 and 60 cm). Together with the result that the performance of wetlands when operating in unsaturated condition was superior to that when operating in water-saturated condition, it is suggested that maintaining sufficient aerobic circumstance in constructed wetlands was important for estrogens removal. Core sampling indicated that the highest efficiency achieved in extremely shallow wetland might be due partly to the highest root density, besides the superior condition for penetration of oxygen. The adsorbed estrogens in sand accounted for less than 12% of the removed estrogens irrespective of the depth, indicating biotic processes play a major role in the estrogens removal.  相似文献   

18.
Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfec-tion reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegrada-tion bacteria and resistance bacteria. All of these advance-ments in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production.  相似文献   

19.
The cost-effectiveness of biological processes has encouraged many researchers to consider biotreatment for the stabilization of toxic or recalcitrant wastewaters. However, to ensure adequate removal of trace contaminants and satisfactory performance with high strength inhibitory industrial wastewaters, conventional biotechnology is being re-evaluated. This review summarizes selected recent contributions to the development of appropriate biotechnology for toxic wastewater treatment. Microbiological constraints and potential solutions are examined. Assessments of conventional biological processes for contaminant control are reviewed, and several new developments in bioreactor design for inhibitory wastes are presented.  相似文献   

20.
Pharmaceuticals and personal care products (PPCPs) consist of a variety of compounds extensively used for the treatment of human and animal diseases and for health or cosmetic reasons. PPCPs are considered as emerging environmental contaminants due to their ubiquitous presence in the environment and high environmental risks. In wastewater treatment plants using conventional activated sludge processes, many PPCPs cannot be efficiently removed. Therefore, there is an increasing need for more effective and cost-efficiency ways of removing PPCPs while treating wastewater. Algae-based technologies have recently attracted growing attentions for their potential application in wastewater treatment and hazardous contaminant removal, which are advantages in reducing operation cost while generating valuable products and sequestrating greenhouse gases at the same time. This work reviews the up-to date researches to reveal potential toxic effects of PPCPs on algae and algae-bacteria consortia, identify mechanisms involved in PPCP removal, and assess the fate of PPCPs in algae-based treatment systems. Current researches suggest that algae and algae-bacteria consortia have great potentials in PPCP removal but more works are required before algae-based technologies can be implemented in large scales. Knowledge gaps are identified and further research focuses are proposed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号