首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

2.
The periodontal ligament (PDL) comprises adult stem cells, which are responsible for periodontal tissue regeneration. In the present study, we investigated the specific profile of the stem cells in the human PDL. Microscopic analysis demonstrated that PDL cells showed a fibroblastic appearance, forming flat and loose aggregates. PDL cells expressed embryonic stem cell-associated antigens (SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT4, NANOG, SOX2, and REX1, and alkaline phosphatase activity), as well as conventional mesenchymal stem cell markers. When PDL cells were cultured in the presence of all-trans-retinoic acid, the numbers of SSEA-3+ and SSEA-4+ PDL cells were significantly decreased, while that of SSEA-1+ was increased. SSEA-4+ PDL cells showed a greater telomere length and growth rate. SSEA-4+ PDL cells exhibited the potential to generate specialized cells derived from three embryonic germ layers: mesodermal (adipocytes, osteoblasts, and chondrocytes), ectodermal (neurons), and endodermal (hepatocytes) lineages. Our findings demonstrated that SSEA-4, a major antigen to distinguish human embryonic stem cells, could also be used to identify multipotent stem cells in the PDL. Hence, SSEA-4+ human PDL cells appear to be a promising source of stem cells for regenerative medicine.  相似文献   

3.
Human embryonic stem cell lines derived from the Chinese population   总被引:17,自引:0,他引:17  
Fang ZF  Jin F  Gai H  Chen Y  Wu L  Liu AL  Chen B  Sheng HZ 《Cell research》2005,15(5):394-400
Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.  相似文献   

4.
目的:探讨建立合适的小鼠孤雌胚胎干细胞建系方法。方法:采用氯化锶联合细胞松弛素B激活B6D2F1杂交小鼠卵母细胞,所获得的囊胚与桑椹胚分别用于孤雌胚胎干细胞的建系,观察两者的建系成功率。结果:共建立了12株小鼠孤雌胚胎干细胞系,这些细胞SSEA-1抗原阳性,SSEA-4,TRA-1-81,TRA-1-60表面抗原阴性,具有AKP活性,保持正常染色体核型,体内外分化分别形成畸胎瘤和拟胚体。结论:采用囊胚和去透明带的桑葚胚建立孤雌胚胎干细胞系获得成功。该方法为人类纯合子的胚胎干细胞建系提供基础,在自体细胞治疗领域中具有潜在的应用价值。  相似文献   

5.
Wang Y  Xu C  Wang H  Liu J  Hui S  Li N  Liu F  Li J 《Human cell》2012,25(1):16-23
We describe the derivation and characterization of three novel human embryonic stem (hES) cell lines (YT1, YT2, YT3). One hES line (YT1) was obtained from six discarded blastocysts in a culture medium supplemented with 12 ng/ml basic fibroblast growth factor (bFGF), and two lines (YT2,YT3)were obtained from three discarded blastocysts in the same medium but supplemented with 16 ng/ml bFGF. These cell lines were derived by partial or whole embryo culture followed by further expansion after manual dissection of the passaged cells. These cells were passaged continuously for more than 6 or 8 months and possessed all of the typical features of pluripotent hES cell lines, such as typical morphological characteristics and the expression of hES-specific markers (TRA-1-60, TRA-1-81, SSEA-4, SSEA-3, alkaline phosphatase, Oct4, Nanog) and pluripotency-related genes (Oct4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex1). The lines maintained normal karyotypes after long-term cultivation. The karyotype of YT1 and YT3 was 46,XX, and that of YT2 was 46, XY. Pluripotency was confirmed by in vitro and in vivo differentiation, and genetic identity was demonstrated by DNA fingerprinting.Our results indicate that higher concentrations of bFGF at the early culture stage support efficient the hES cell derivation.  相似文献   

6.
This 3-week protocol produces embryonic-like stem cells from human umbilical cord blood (CBEs) for neural differentiation using a three-step system (cell isolation/expansion/differentiation). The CBE isolation produces a highly purified fraction (CD45-, CD33-, CD7-, CD235a-) of small pluripotent stem cells (2-3 microm in diameter) coexpressing embryonic stem cell markers including Oct4 and Sox2. Initial CBE expansion is performed in high density (5-10 millions per ml) in the presence of extracellular matrix proteins and epidermal growth factor. Subsequent neural differentiation of CBEs requires sequential introduction of morphogenes, retinoic acid, brain-derived neurotrophic factor and cyclic AMP. Described methods emphasize defined media and reagents at all stages of the experiment comparable to protocols described for culturing human embryonic stem cells and cells from other somatic stem cell sources. Neural progenitor and cells generated from CBEs may be used for in vitro drug testing and cell-based assays and potentially for clinical transplantation.  相似文献   

7.
Retinal progenitor cells are believed to display altered proliferation and differentiation during retinal development, suggesting that retinal progenitor cell populations are not homogeneous. However, the composition of progenitor cell populations is not known, due in part to the lack of known surface markers identifying distinct stages of retinal progenitor cells. We found a dramatic change in the expression profile of the cell surface antigens c-kit and stage-specific embryonic antigen-1 (SSEA-1) in retinal progenitor cells during development. While SSEA-1 was expressed early in development, c-kit expression peaked in late stage progenitor cells. The identification of these developmental markers enabled us to characterize distinct sub-populations of retinal progenitor cells. Progenitor cell subpopulations expressing either SSEA-1, c-kit, or both showed different proliferation and differentiation abilities. Although SSEA-1-positive cells were augmented by beta-catenin signaling, c-kit-positive cells were positively regulated by Notch signaling. Taken together, our data suggest that c-kit and SSEA-1 can be used to spatiotemporally differentiate retinal progenitor populations that have intrinsically distinct characteristics. Prolonged expression of c-kit by a retrovirus resulted in the promotion of proliferation and the appearance of nestin-positive cells in the presence of the c-kit ligand, stem cell factor (SCF). This suggests a role for c-kit, Notch, and the beta-catenin signaling network in retinal development.  相似文献   

8.
9.
10.
11.
12.
13.
Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigel in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.  相似文献   

14.
Mouse embryonic fibroblasts (MEFs) are the most commonly used feeder cells for pluripotent stem cells. However, autogeneic feeder (AF) cells have several advantages such as no xenogeneic risks and reduced costs. In this report, we demonstrate that common marmoset embryonic stem (cmES) cells can be maintained on common marmoset AF (cmAF) cells. These cmES cells were maintained on cmAF cells for 6 months, retaining their morphology, normal karyotype, and expression patterns for the pluripotent markers Oct-3/4, Nanog, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, as well as their ability to differentiate into cardiac and neural cells. Antibody array analysis revealed equivalent protein expression profiles between cmES cells maintained on cmAF cells and MEFs. In addition, similarly prepared human embryonic stem (hES) and induced pluripotent stem (hiPS) cell-derived AF cells supported the growth of and maintained the morphology and pluripotent marker expressions of hES and hiPS cells, respectively. DNA microarray analysis revealed that these hES and hiPS cells had mRNA expression profiles similar to those of hES and hiPS cells maintained on MEFs, respectively. Taken together, these findings imply that AF cells can replace MEFs in the routine maintenance of primate pluripotent stem cells.  相似文献   

15.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

16.
17.
Eleven early embryonic stem (EES) cell lines were established using a new novel method. Two cell stage embryos from the ddY mouse strain were cultured in alpha-MEM supplemented with 10% fetal calf serum (FCS) and embryotrophic factors (ETFs) and allowed to develop to the trilaminal germ disc embryonic stage. Only small round cells (EES cells) were isolated by the colony isolating technique and subsequently cultured in the same medium containing the ETFs and leukemia inhibitory factors (LIF-10 ng/ml). The newly established embryonic stem (ES) cells isolated from inner cell mass of blastocysts differentiated from two cell stage embryo in culture. The EES and ES cell lines were maintained in an undifferentiated state using Ham's F12 medium supplemented with 10% FCS and 1 ng/ml of LIF. The EES cells maintained their normal genetic and morphological features as well as their potential to differentiate into a broad spectrum of cell types as well as their ability to contribute to all cell lineages in chimeric mice. Moreover, these cell lines changed and differentiated into various kinds of cells by removing LIF and by the addition of ETFs to the vitro culture system. All 11 EES cell lines and 3 ES cell lines formed embryoid bodies; however, cell line EES-4 formed tube-like structures which extended, anastomosed with each other, and finally formed networks when the LIF were absent. Primitive germ organ-like structures composed of 3 germ layers were recognized in the cultures following the administration of ETFs. In conclusion, the new method devised by us is a novel, easy and reliable technique for establishing EES cell lines.  相似文献   

18.
Human embryonic stem (hES) cells were originally isolated and maintained on mouse embryonic fibroblast (MEF) feeder layers in the presence of fetal bovine serum (FBS). However, if the hES cells are to be used for therapeutic applications, it is preferable to regulatory authorities that they be derived and cultured in animal-free conditions to prevent mouse antigen contamination that would exacerbate an immune response to foreign proteins, and the potential risk of transmission of retroviral and other zoonotic pathogens to humans. As a step towards this goal, we derived a new hES cell line (MISCES-01) on human adult skin fibroblasts as feeder cells using serum replacement (SR) medium. The MISCES-01 cells have a normal diploid karyotype (46XX), express markers of pluripotency (OCT4, GCTM-2, TRA-1-60, TRA-1-81, SSEA-3, SSEA-4, and alkaline phosphatase) and following in vitro and in vivo differentiation, give rise to derivatives of the three primary germ layers. This cell line can be obtained for research purposes from the Australian Stem Cell Centre (http://www.stemcellcentre.edu.au).  相似文献   

19.
In vitro neuronal differentiation of cultured human embryonic germ cells   总被引:8,自引:0,他引:8  
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases.  相似文献   

20.
一种新的人胚胎干细胞自身来源的滋养层支持其体外培养   总被引:2,自引:0,他引:2  
摘要: 通过人胚胎干细胞(Human embryonic stem cells, hESCs)经体内分化获取间充质干细胞(Mesenchymal stem cells, MSCs)为人胚胎干细胞提供一种新的滋养层。将约5×106个hESCs注射入重症免疫联合缺陷小鼠形成畸胎瘤, 8周后再从畸胎瘤中分离MSCs并鉴定, 将MSCs作为hESCs的滋养层细胞, 并检测和观察hESCs的生长情况、细胞特性和分化能力。从畸胎瘤中获得了纯度较高的具有类似骨髓来源的MSC特性的细胞群, 其形态相似、表面抗原标志相似(CD34和CD45阴性, CD29、CD49b、CD105、CD73和CD90阳性), 经诱导可以向成骨细胞和成脂细胞分化。将hESCs在MSCs滋养层细胞上传代培养10代以上, hESCs依然具有正常的细胞形态, 反转录PCR证实其特异转录因子Oct4、Nanog的表达, 干细胞表面标记SSEA-1显示为阴性, SSEA-4、TRA-1-60、TRA-1-81显示为阳性, 碱性磷酸酶染色显示为阳性, 并且核型正常。体外EB形成和体内畸胎瘤形成证明了其全能性。因此来源于hESCs本身的MSCs可以被用来作为支持胚胎干细胞生长并维持其未分化状态的滋养层细胞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号