首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

2.
In the development of a system for the removal of chlorophenols from aqueous effluents, a range of solid substrates for the growth of Coriolus versicolor were investigated. Substrates included wood chips, cereal grain, wheat husk and wheat bran. Suitability for transformation of chlorophenols depended on laccase production by the fungus. The greatest amount of laccase (<25 Units g−1 substrate) was produced on wheat husk and wheat bran over 30 days colonisation. Aqueous extracts of laccase from wheat husk and wheat bran cultures removed 100% of 2,4-dichlorophenol (50 ppm) from solution within 5 h and 75–80% of pentachlorophenol (50 ppm) within 24 h. Wheat bran was formulated into pellets with biscuit flour to provide a compact substrate for fungal immobilisation. Addition of 8–12% yeast extract to the pellets increased laccase production five-fold. Colonised pellets were added to chlorophenol solutions in 200–4000-ml bioreactors, resulting in >90% removal of chlorophenols within 100 min. Received: 10 April 2000 / Received revision: 4 July 2000 / Accepted: 10 July 2000  相似文献   

3.
Removal of phenols from wastewater by soluble and immobilized tyrosinase   总被引:2,自引:0,他引:2  
An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Amarula Cream is an alcoholic beverage derived from the distillation of fermented marula fruit and to date there is no scientific data as to the characteristics of the distillery wastewater generated from its production. The wastewater was found to have a chemical oxygen demand (COD) of 27 g/l, a pH of 3.8, a high concentration of phenolic compounds (866 mg/l) and a high suspended solids content (10.5 g/l), all of which could adversely affect biological treatment. Full-strength wastewater was treated using shake-flask monocultures of four white rot fungi (Trametes pubescens MB 89, Ceriporiopsis subvermispora, Pycnoporus cinnabarinus or Phanerochaete chrysosporium) at pH 5.0 with no additional carbon or nitrogen supplements. Trametes pubescens performed the best with regards to degrading phenolic compounds, COD and colour, while P. cinnabarinus improved the pH to the greatest extent. Laccase synthesis was only detected in the T. pubescens and C. subvermispora cultures. Six wastewater concentrations (100, 80, 60, 40, 20 and 10%) were assessed at pH 4.5 to establish an optimum concentration for remediation and laccase production by T. pubescens. Similar COD removal efficiencies (71–77%) and phenolic removal efficiencies (87–92%) were achieved at all concentrations. The phenolic removal efficiencies improved by approximately 5% compared to the screening experiment at pH 5.0, indicating that the laccase was more efficient at pH 4.5. The pH became more basic as a result of treatment and the colour decreased for samples below 60% wastewater concentration. The maximum laccase activity (1063 ± 26 units/l) was obtained in the 80% wastewater concentration. This study has resulted in the first characterization of Amarula distillery wastewater and showed that it has a high phenolic compound concentration, COD and suspended solids content. It was possible to biologically treat the wastewater at full strength using a number of white-rot fungi just by raising the pH.  相似文献   

5.
In the present paper the effect of adding veratryl alcohol and copper sulphate on laccase activity production by Trametes versicolor immobilized into alginate beads has been investigated. Employing copper sulphate as laccase inducer or supplementing the culture medium with veratryl alcohol, led to maximum values of laccase activity. However, the highest laccase activity (around 4,000 U l−1) was obtained in cultures simultaneously supplemented with copper sulphate (3 mM) and veratryl alcohol (20 mM). These values implied a considerable enhancement in relation to␣control cultures without any inducer (around 200 U l−1). The production of laccase by immobilized T. versicolor in a 2-l airlift bioreactor with the optimized inducer has been evaluated. Laccase activities around 1,500 U l−1 were attained. The bioreactor operated for 44 days without operational problems and the bioparticles (fungus grows in alginate beads) maintained their shape throughout the fermentation. Moreover, the extracellular liquid obtained was studied in terms of pH and temperature activity and stability. On the other hand, anthracene was added in two-repeated batches in order to determine the efficiency of this process to degrade pollutants. Near complete degradation was reached in both batches. Moreover, in vitro degradation of several polycyclic aromatic hydrocarbons by crude laccase was also performed.  相似文献   

6.
Role of white radish peroxidase has been investigated in the treatment of water contaminated with phenols, particularly α-naphthol. Water polluted with α-naphthol was treated with white radish peroxidase under various experimental conditions. The treatment of α-naphthol polluted water by this enzyme in presence of polyethylene glycol enhanced its removal. Studies carried out in absence of polyethylene glycol showed only 36% of α-naphthol removal however, 96% of it was removed in presence of 0.1 mg/mL of polyethylene glycol in 100 mM sodium phosphate buffer, pH 6.5, and 0.75 mM H2O2 at 40°C. The other phenols oxidized and removed from waste water under similar experimental conditions were 18%, m-cresol; 30%, p-chlorophenol; 62%, p-bromophenol; 20%, benzyl alcohol; 21%, quinol; 38%, 2,6-dichlorophenol; 13%, 2,4-dichlorophenol; and 2%, native phenol. Mixtures of different phenolic compounds removed under identical treatment conditions were 63%, A; 40%, B; 52%, C; 41%, D; 72%, E; 66%, F; and 72%, G. Thus, peroxidase in presence of an additive, polyethylene glycol could be a suitable tool for the removal of phenolic compounds from industrial effluents.  相似文献   

7.
Cross-linked magnetic chitosan beads were prepared by phase-inversion technique in the presence of epichlorohydrin under alkaline condition, and used for covalent immobilization of laccase. The activity of the immobilized laccase on the magnetic chitosan was about 260 U (g/dry beads) with an enzyme loading of about 16.33 ± 0.39 mg [(g/dry beads) mg/g]. Kinetic parameters, V max and K m values were determined as 21.7 U/mg protein and 9.4 μM for free enzyme, and 15.6 U/mg protein and 19.7 μM for the immobilized laccase, respectively. The operational and thermal stabilities of the immobilized laccase were improved compared to free counterpart. The immobilized laccase was operated in a batch reactor for the decolorization of reactive dyes from aqueous solution. The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.  相似文献   

8.
An industrial kraft pine lignin (Indulin AT, KL) was characterized and treated in both aqueous-buffered media and dioxane to water, either with a partially purified laccase from Fusarium proliferatum or with the laccase plus 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) as mediator. The changes in the lignin after different incubation periods were analyzed through the application of high performance liquid chromatography (HPLC), UV–visible (Vis) spectroscopy and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). At the onset of incubation, laccase-treated samples showed a slight polymerization and strong modifications in UV–Vis spectra. Through Py-GC/MS, a decrease in phenolic and methoxy-bearing pyrolysis products was observed, in contrast to an increase in the more oxidized products. After longer incubation periods (48 h) a substantial polymerization was detected by HPLC, along with a decrease in the guaiacyl (G) units. In contrast, the analysis by HPLC of the samples recovered from the laccase-ABTS system (LMS) showed an intense depolymerization, accompanied by a sizeable loss in G units and a decrease in the methyl and ethyl side-chain phenolic compounds. These results provide conclusive evidence of a rapid initial attack of the industrial lignin by laccase and notable modifications in the KL after longer incubation periods with laccase or LMS.  相似文献   

9.
Pulp and paper mills generate pollutants associated to their effluents depending upon the type of process, type of the wood materials, process technology applied, management practices, internal recirculation of the effluent for recovery, the amount of water used in the industrial process and type of secondary treatment. This study is the first that reports a simultaneous evaluation of the effects of tertiary treatments by fungi (Rhizopus oryzae and Pleurotus sajor caju), by enzyme (laccase) and by an oxidation process (photo-Fenton) on individual phenols (vanillin, guaiacol, phloroglucinol, vanillic acid and syringic acid) of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (BKPME). The tertiary treatments were applied on BKPME samples and in BKPME samples supplemented with extra concentration of each phenol. Tertiary treatments by Rhizopus oryzae and photo-Fenton oxidation were able of complete removal (100%) of phenols on BKPME samples whereas P. sajor caju and laccase were able of 60–85% removal. On BKPME samples with added concentration of each phenol, photo-Fenton was the only treatment capable of total phenols removal (100%), which suggests a great potential for its application.  相似文献   

10.
During feed-batch cultivation of the white-rot fungus Panus tigrinus in a 5-l bioreactor on N-limited medium, 100, 200, 500, 1,000 and 2,000 mg 2,4,6-trichlorophenol (2,4,6-TCP) l–1 were added sequentially after 90% removal of the previous portion of the toxicant. The addition of 500 mg 2,4,6-TCP l–1 without preliminary adaptation killed the culture. The addition of 300 mg 2,4,6-TCP l–1 without prior adaptation resulted in its slower removal than removal of 2,000 mg 2,4,6-TCP l–1 by this adapted culture. After adaptation of P. tigrinus to 2,4,6-TCP in a 72-l bioreactor, the mixture of 2,4-dichlorophenol, 2,4,6-TCP, and pentachlorophenol, each at 500 mg l–1, was totally removed over 3 weeks. No lignin peroxidase activity was found in the course of cultivation of the fungus. Laccase activity was suppressed by addition of 2,4,6-TCP. Mn-peroxidase was found to be responsible for transformation of the chlorophenols. As final products of the process, several newly formed aromatic polymers, both chlorinated and non-chlorinated, were found in the culture liquid. Electronic Publication  相似文献   

11.
In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l−1) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p < 0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV–Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG.  相似文献   

12.
The biotreatment of complex mixtures of volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene isomers (BTEX) has been investigated by many workers. However, the majority of the work has dealt with the treatment of aqueous or soil phase contamination. The biological treatment of gas and vapor phase sources of VOC wastes has recently received attention with increased usage of biofilters and bioscrubbers. Although these systems are relatively inexpensive, performance problems associated with biomass plugging, gas channeling, and support media acidification have limited their adoption. In this report we describe the development and evaluation of an alternative biotreatment system that allows rapid diffusion of both BTEX and oxygen through a silicone membrane to an active biofilm. The bioreactor system has a rapid liquid recycle, which facilitates nutrient medium mixing over the biofilm and allows for removal of sloughing cell mass. The system removed BTEX at rates up to 30 μg h−1 cm−2 of membrane area. BTEX removal efficiencies ranged from 75% to 99% depending on the BTEX concentration and vapor flowrate. Consequently, the system can be used for continuous removal and destruction of BTEX and other potential target VOCs in vapor phase streams. Journal of Industrial Microbiology & Biotechnology (2001) 26, 316–325. Received 14 August 2000/ Accepted in revised form 28 February 2001  相似文献   

13.
Laccase, a so-called “blue-copper” oxidase, is able to oxidize a variety of organic compounds. Sol–gel derived silica glasses are frequently adopted as an immobilization method to improve the stability of enzymes and make them reusable. In this study, immobilization conditions were optimized to achieve improved embedding results. The thermal stability, reaction stability and storage stability were improved with the immobilized enzyme when compared to the free enzyme. 2,4-Dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) were chosen as model compounds. The treatment of chlorophenols (CPs) by immobilized laccase demonstrated excellent removal and response stability. The affinity of TCP for immobilized laccase was higher than that of DCP. This finding leads to different removal efficiencies under variable conditions (reaction time, initial concentration, dosage of immobilized laccase and removal rate in mixed solution). By fitting the experimental data with the diffusion model of the degradation process, the degradation of CPs by immobilized laccase matches an intraparticle diffusion-controlled model.  相似文献   

14.
We are studying the enzymatic modification of polycyclic aromatic hydrocarbons (PAHs) by the laccase from Coriolopsis gallica UAMH 8260. The enzyme was produced during growth in a stirred tank reactor to 15 units ml−1, among the highest levels described for a wild-type fungus; the enzyme was the major protein produced under these conditions. After purification, it exhibited characteristics typical of a white rot fungal laccase. Fifteen azo and phenolic compounds at 1 mM concentration were tested as mediators in the laccase oxidation of anthracene. Higher anthracene oxidation was obtained with the mediator combination of ABTS and HBT, showing a correlation between the oxidation rate and the mediator concentration. Reactions with substituted phenols and anilines, conventional laccase substrates, and PAHs were compared using the native laccase and enzyme preparations chemically modified with 5000 MW-poly(ethylene glycol). Chemically modified laccase oxidized a similar range of substituted phenols as the native enzyme but with a higher catalytic efficiency. The k cat increase by the chemical modification may be as great as 1300 times for syringaldazine oxidation. No effect was found of chemical modification on mediated PAH oxidation. Both unmodified and PEG-modified laccases increased PAH oxidation up to 1000 times in the presence of radical mediators. Thus, a change of the protein surface improves the mediator oxidation efficiency, but does not affect non-enzymatic PAH oxidation by oxidized mediators. Received 10 December 2001/ Accepted in revised form 20 July 2002  相似文献   

15.
Reactions of pentachlorophenol with laccase from Coriolus versicolor   总被引:3,自引:0,他引:3  
Laccase, purified from Coriolus versicolor, removed pentachlorophenol (PCP) from solution at pH 5, depending on initial PCP concentration and amount of laccase. With 100 units of laccase, 100% of 25 μg ml−1 PCP and 60% of 200 μg ml−1 PCP were removed respectively over 72 h. No free chloride was released in the reaction. In reaction with 100 μg PCP, products were primarily polymers (about 80,000 MW) with only 2–3 pg of o- and p-chloranils formed. Polymers were stable to acid hydrolysis and no release of PCP, or other low-molecular-weight products, was detected over several weeks. Laccase has a potential use in the biotreatment of aqueous effluents containing PCP, with polymerised products being removed from solution due to their high molecular weight. Received: 7 June 1999 / Received revision: 18 August 1999 / Accepted: 2 September 1999  相似文献   

16.
Ko CH  Chen SS 《Bioresource technology》2008,99(7):2293-2298
Guaiacol, catechol, m-cresol are common phenolic compounds presented in various industrial effluents but difficult to be removed by conventional wastewater treatment schemes. To elucidate mechanisms of enhanced membrane removal by laccase polymerization, different MF and UF membranes were employed in a cross-flow module for phenol concentration of 5mM. With 2.98 IU/l of laccase applied at room temperature, guaiacol, catechol and m-cresol were polymerized to products of averaged molecular weight of 9600, 8350 and 5400 Da (Dalton), respectively. Methoxy and hydroxyl-substituted phenols (guaiacol and catechol) were polymerized better than methyl-substituted phenol (m-cresol) due to more stable free-radical containing intermediate structure induced by oxygen-containing methoxy and hydroxyl functional groups. Removal efficiencies for the un-reacted phenols were dependent on the molecular sizes (length and width), but were dependent on the molecular weight for the polymerized phenolic compounds. Flux was declined initially but reached steady state after 180 min of filtration, indicating these MF/UF membranes can be used for removal of these polymerized phenols without significant fouling. In addition, pretreatments by the inactivated laccase only caused further flux reduction without additional removal of phenols.  相似文献   

17.
A novel bacterium, strain BM90, previously isolated from Tyrrhenian Sea, was metabolically characterized testing its ability to use 95 different carbon sources by the Biolog system. The bacterium showed a broad capacity to use fatty-, organic- and amino-acids; on the contrary, its ability to use carbohydrates was extremely scarce. Strain BM90 was identified and affiliated to Delftia tsuruhatensis by molecular techniques based on 16S rRNA gene sequencing. D. tsuruhatensis BM90, cultivated in shaken cultures, was able to grow on various phenolic compounds and to remove them from its cultural broth. The phenols used, chosen for their presence in industrial or agro-industrial effluents, were grouped on the base of their chemical characteristics. These included benzoic acid derivatives, cinnamic acid derivatives, phenolic aldehyde derivatives, acetic acid derivatives and other phenolic compounds such as catechol and p-hydroxyphenylpropionic acid. When all the compounds (24) were gathered in the same medium (total concentration: 500 mg/l), BM90 caused the complete depletion of 18 phenols and the partial removal of two others. Only four phenolic compounds were not removed. Flow cytometry studies were carried out to understand the physiological state of BM90 cells in presence of the above phenols in various conditions. At the concentrations tested, a certain toxic effect was exerted only by the four compounds that were not metabolized by the bacterium.  相似文献   

18.
Of the 19 nucleotides and nucleosides tested, all were eluted by 1 mM HCl in less than 60 ml from 2 × 6-cm columns of Polyclar AT (an insoluble polyvinylpyrrolidone). Recoveries were good and, with the possible exceptions of ADPG and UDPG, the presence of cotton leaf extract did not decrease recovery of known nucleotides and nucleosides.Passing leaf extracts through Polyclar AT removed most, but not all, of the uv-absorbing impurities that interfere with quantitation of nucleotides and nucleosides. The optimum pH for purification of HClO4 extracts from leaves of alfalfa, cotton, grape, and orange appeared to be between 2.0 and 3.0. In this pH range Polyclar AT removed from 59 to 91% of the substances in leaf extracts that absorbed at 230 nm and from 93 to 97% of the substances that absorbed at 320 nm.Extraction of leaf extract with isoamyl alcohol was relatively ineffective and extraction with ether was almost completely ineffective in removing uv-absorbing impurities.Because nucleotides and nucleosides quickly pass through a short column of Polyclar AT at pH 3.0 while plant phenols are retained, this procedure provides a simple and rapid method for bulk purification of leaf extracts prior to chromatography and assay of nucleotides and nucleosides.  相似文献   

19.
The present study was focused on screening and characterization of tyrosinase enzyme produced by marine actinobacteria and its application in phenolic compounds removal from aqueous solution. A total of 20 strains were isolated from marine sediment sample and screened for tyrosinase production by using skimmed milk agar medium. Among 20 isolates, two isolates LK-4 and LK-20 showed zone of hydrolysis and these were taken for secondary screening by using tyrosiue agar medium. Based on the result of secondary screening LK-4 was selected for further analysis, such as tyrosinase assay, protein content and specific activity of the enzyme. The tyrosinase enzyme was produced in a SS medium and was partially purified by ammonium sulfate precipitation, dialysis and SDS PAGE. The isolate (LK-4) was identified as Streptomyces espinosus using 16S rRNA gene sequencing and named as "Streptomyces espinosus strain LK4 (KF806735)". The tyrosinase enzyme was immobilized in sodium alginate which was applied to remove phenolic compounds from water. The enzyme efficiently removed the phenolic compounds from aqueous solution within few hours which indicated that tyrosinasc enzyme produced by Streptomyces espinosus strain LK-4 can be potently used for the removal of phenol and phenolic compounds from wastewater in industries.  相似文献   

20.
A solid–liquid two-phase partitioning bioreactor (TPPB) in which the non-aqueous phase consisted of polymer (HYTREL) beads was used to degrade a model mixture of phenols [phenol, o-cresol, and 4-chlorophenol (4CP)] by a microbial consortium. In one set of experiments, high concentrations (850 mg l−1 of each of the three substrates) were reduced to sub-inhibitory levels within 45 min by the addition of the polymer beads, followed by inoculation and rapid (8 h) consumption of the total phenolics loading. In a second set of experiments, the beneficial effect of using polymer beads to launch a fermentation inhibited by high substrate concentrations was demonstrated by adding 1,300 and 2,000 mg l−1 total substrates (equal concentrations of each phenolic) to a pre-inoculated bioreactor. At these levels, no cell growth and no degradation were observed; however, after adding polymer beads to the systems, the ensuing reduced substrate concentrations permitted complete destruction of the target molecules, demonstrating the essential role played by the polymer sequestering phase when applied to systems facing inhibitory substrate concentrations. In addition to establishing alternative modes of TPPB operation, the present work has demonstrated the differential partitioning of phenols in a mixture between the aqueous and polymeric phases. The polymeric phase was also observed to absorb a degradation intermediate (arising from the incomplete biodegradation of 4CP), which opens the possibility of using solid–liquid TPPBs during biosynthetic transformation to sequester metabolic byproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号