首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular redistribution of protein kinase C family members (alpha, beta, gamma, delta, epsilon and zeta isoforms) was examined in response to treatment with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) or nerve growth factor (NGF) in a synaptosomal-enriched P2 fraction from rat brain. Treatment with TPA affected members of the classical-PKC family (alpha, beta and gamma), resulting in a final loss of total protein of each isoenzyme. The kinetics of changes of members of the novel-PKC family are different, the delta isoform being translocated, but not down-regulated, while the epsilon isoform showing only a slight diminishing of immunoreactivity in the soluble and particulate fractions. The atypical-PKC zeta isoform was not translocated in response to TPA. Incubation with NGF induced a loss of immunoreactivity of the cytosolic alpha, beta and epsilon isoforms, but the membrane fractions of these isoforms were not appreciably affected. In contrast, a marked translocation from cytosol to membrane was observed in the case of the gamma and delta isoforms. The zeta isoform presented a slight translocation from the particulate fraction to the soluble fraction. Thus, the results show that the effects of TPA and NGF on PKC isoforms are not coincident in synaptosomes, the 6 isoform being activated and not down-regulated by both treatments, whereas the gamma isoform is only down-regulated in the case of TPA, but presents sustained translocation with NGF, indicating that PKC isoform-specific degradation pathways exist in synaptic terminals. The effects of NGF on PKC isoforms coexist with an increase in NGF-induced polyphosphoinositide hydrolysis, suggesting the participation of phospholipases.  相似文献   

2.
Protein kinase C (PKC), a family of related but distinct enzymes whose cellular functions are poorly understood, acts in synergy with Ca2+ mobilization for the activation of platelets. Using specific antibodies for the different isoforms, immunoblot analysis revealed the presence in human platelets of three different PKC subtypes which specifically react with alpha, beta and zeta-PKC antibodies. Whereas the subcellular distribution of the alpha PKC remained unaffected, incubation of platelets with 1 microM PMA for 2 min resulted in a significant subcellular distribution from cytosol to membrane of beta-PKC (25%) and zeta (15%). The beta-PKC isoform is more sensitive than alpha and zeta-PKC to PMA, since 100 nM PMA resulted in a translocation of 85%, 64% and 66% respectively of a maximum translocation observed with 1 microM PMA.  相似文献   

3.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

4.
Rat soleus muscle was denervated for 3 or 7 days, and total membrane protein kinase C (PKC) activity and translocation and immunocytochemical localization of PKC isoforms were examined. Dietary administration of clenbuterol concomitant with denervation ameliorated the atrophic response and was associated with increased membrane PKC activity at both 3 (140%) and 7 (190%) days. Of the five PKC isoforms (alpha, epsilon, theta, zeta, and mu) detected in soleus muscle by Western immunoblotting, clenbuterol treatment affected only the PKC-alpha and PKC-theta forms. PKC-alpha was translocated to the membrane fraction upon denervation, and the presence of clenbuterol increased membrane-bound PKC-alpha and active PKC-alpha as assayed by Ser(657) phosphorylation. PKC-theta protein was downregulated upon denervation, and treatment with clenbuterol further decreased both cytosolic and membrane levels. Immunolocalization of PKC-theta showed differences for regulatory and catalytic domains, with the latter showing fast-fiber type specificity. The results suggest potential roles of PKC-alpha and PKC-theta in the mechanism of action of clenbuterol in alleviating denervation-induced atrophy.  相似文献   

5.
In this study we report that protein kinase C zeta (PKC zeta), one of the atypical isoforms of the PKC family located predominantly in cytosol, is redistributed by C2-ceramide treatment in isolated hepatocytes. PKC zeta increased in membrane and nuclear fractions after 30 min of treatment with C2-ceramide in a dose- and time-dependent manner. The action of C2-ceramide was inhibited by wortmannin and LY 294002, indicating that C2-ceramide-induced PKC zeta increase in both nucleus and membrane fractions is mediated by phosphatidylinositol 3-kinase (PI3-kinase) activation. In addition, a significant translocation of PI3-kinase to the nucleus was observed after C2-ceramide treatment.  相似文献   

6.
7.
The signaling cascade linking insulin receptor stimulation to the activation of Na/H exchanger (NHE) was investigated in human erythrocytes, a simple cell model expressing the NHE1 isoform and protein kinase C (PKC) alpha and zeta isoforms only. Our results demonstrate the presence of phosphatidylinositol (PtdIns) 3-kinase in these cells and its activation by insulin. With a similar time-course, insulin also promoted both the translocation and activation of PKC zeta, but had no effect on PKC alpha. Inhibition of PtdIns 3-kinase with wortmannin prevented the activation of PKC zeta by insulin. Stimulation of NHE1 was observed after 10 min of insulin treatment and persisted for at least 60 min. This effect was totally abolished by wortmannin or GF 109203X, an inhibitor of all PKC isoforms, but not by G? 6976, a specific inhibitor of conventional and novel PKCs (e.g. PKC alpha). These data indicate that PKC zeta activation is mediated by a PtdIns 3-kinase-dependent mechanism and that NHE1 stimulation involves the sequential activation of PtdIns 3-kinase and PKC zeta. In addition, insulin stimulation of NHE1 occurred without altering the phosphorylation state of the exchanger, suggesting that the phosphorylation of an ancillary protein by PKC zeta would be responsible for activation of the transporter.  相似文献   

8.
Modulation of protein kinase C isoforms by PAF in cerebral cortex.   总被引:1,自引:0,他引:1  
The effect of platelet activating factor (PAF) on subcellular distribution of protein kinase C isoforms in rat cerebral cortex was investigated. PAF induced an increase in levels of protein kinase C epsilon and gamma in membrane fraction. Results also indicate that PAF induced an increase in protein kinase C delta levels in both cytosolic and membrane fraction. This effect is possibly due to an increase in enzyme synthesis, as indicated by the results obtained from the experiments performed in the presence of cycloheximide and actinomycin. All the effects induced by PAF were time- and dose-dependent, and were mediated through the activation of PAF receptor. These findings indicate that the three isoforms may be involved in signal transduction of PAF in the brain.  相似文献   

9.
Production of superoxide anions by the multicomponent enzyme of human neutrophil NADPH oxidase is accompanied by extensive phosphorylation of p47(phox), one of its cytosolic components. p47(phox) is an excellent substrate for protein kinase C (PKC), but the respective contribution of each PKC isoform to this process is not clearly defined. In this study, we found that PKC isoforms known to be present in human neutrophils (PKC alpha, beta, delta, and zeta) phosphorylate p47(phox) in a time- and concentration-dependent manner, with apparent K(m) values of 10.33, 3.37, 2.37, and 2.13 microM for PKC alpha, beta II, delta, and zeta, respectively. Phosphopeptide mapping of p47(phox) showed that, as opposed to PKC zeta, PKC alpha, beta II, and delta are able to phosphorylate all the major PKC sites. The use of p47(phox) mutants identified serines 303, 304, 315, 320, 328, 359, 370, and 379 as targets of PKC alpha, beta II, and delta. Comparison of the intensity of phosphopeptides suggests that Ser 328 is the most phosphorylated serine. The ability of each PKC isoform to induce p47(phox) to associate with p22(phox) was tested by using an overlay technique; the results showed that all the PKC isoforms that were studied induce p47(phox) binding to the cytosolic fragment of p22(phox). In addition, PKC alpha, beta II, delta, and zeta were able to induce production of superoxide anions in a cell-free system using recombinant cytosolic proteins. Surprisingly, PKC zeta, which phosphorylates a subset of selective p47(phox) sites, induced stronger activation of the NADPH oxidase. Taken together, these results suggest that PKC alpha, beta II, delta, and zeta expressed in human neutrophils can individually phosphorylate p47(phox) and induce both its translocation and NADPH oxidase activation. In addition, phosphorylation of some serines could have an inhibitory effect on oxidase activation.  相似文献   

10.
The subcellular distribution and activation state of protein kinase C (PKC) was studied after short-term exposure of rabbit platelets to platelet-activating factor (PAF). Cytosolic and nonidet P-40-solubilized particulate extracts prepared from treated platelets were subjected to analytical column chromatography on MonoQ, hydroxylapatite and Superose 6/12. PKC activity was assayed by the ability of the enzyme to phosphorylate the following substrates: (i) histone H1 in the presence of the activators calcium, diacylglycerol and phosphatidylserine; (ii) histone H1 following proteolytic activation of PKC with 0.5 micrograms trypsin/ml; and (iii) protamine in the absence of calcium and lipid. PAF treatment for 1-20 min elicited a rapid 2-4-fold activation of both cytosolic and particulate-derived PKC as assessed by all three methods. On the other hand, there were no significant PAF-induced changes in the level of [3H]phorbol-12,13-dibutyrate binding by soluble and particulate-associated PKC. Hydroxyapatite column chromatography revealed that in non-treated rabbit platelets the type II (beta) form of PKC predominated, but PAF appeared to induce a shift in the elution profile from this resin. The stability of the PAF activation of PKC to column chromatography and the altered binding affinity to hydroxylapatite indicated that the stimulation might be a consequence of covalent modification, albeit minor, since PKC still eluted as an 80 kDa protein from Superose 6/12. As the PAF-induced increases in the kinase activity of PKC were preserved even after proteolytic activation with trypsin, but were without effect on the phorbol ester binding activity, such a putative modification may have occurred within or near the catalytic domain of PKC. These findings imply that PAF may directly modulate the activity of preexisting membrane-associated PKC by a novel mechanism, rather than by eliciting its recruitment from the cytoplasm.  相似文献   

11.
The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.  相似文献   

12.
The relationship between polyphosphoinositide hydrolysis and protein kinase C (PKC) activation was explored in rabbit platelets treated with the agonists platelet-activating factor (PAF), thrombin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and with the anti-aggregant prostacyclin (PGI2). Measurement of the hydrolysis of radiolabelled inositol-containing phospholipids relied upon the separation of the products [3H]inositol mono-, bis- and tris-phosphates by Dowex-1 chromatography. PKC activity, measured in platelet cytosolic and Nonidet-P40-solubilized particulate extracts that were fractionated by MonoQ chromatography, was based upon the ability of the enzyme to phosphorylate either histone H1 in the presence of the activators Ca2+, diacylglycerol and phosphatidylserine, or protamine in the absence of Ca2+ and lipid. Treatment of platelets for 1 min with PAF (2 nM) or thrombin (2 units/ml) led to the rapid hydrolysis of inositol-containing phospholipids, a 2-3-fold stimulation of both cytosolic and particulate-derived PKC activity, and platelet aggregation. Exposure to TPA (200 nM) for 5 min did not stimulate formation of phosphoinositides, but translocated more than 95% of cytosolic PKC into the particulate fraction, and induced a slower rate of aggregation. PGI2 (1 microgram/ml) did not enhance phosphoinositide production, and at higher concentrations (50 micrograms/ml) it antagonized the ability of PAF, but not that of thrombin, to induce inositol phospholipid turnover, even though platelet aggregation in response to both agonists was blocked by PGI2. On the other hand, PGI2 alone also appeared to activate (by 3-5-fold) cytosolic and particulate PKC by a translocation-independent mechanism. The activation of PKC by PGI2 was probably mediated via cyclic AMP (cAMP), as this effect was mimicked by the cAMP analogue 8-chlorophenylthio-cAMP. It is concluded that this novel mechanism of PKC regulation by platelet agonists may operate independently of polyphosphoinositide turnover, and that activation of cAMP-dependent protein kinase represents another route leading to PKC activation.  相似文献   

13.
Vasoactive eicosanoids have been implicated in the pathogenesis of coronary vasospasms. The signaling mechanisms of eicosanoid-induced coronary vasoconstriction are unclear, and a role for protein kinase C (PKC) has been suggested. Activated PKC undergoes translocation to the surface membrane in the vicinity of Ca2+ channels; however, the effect of Ca2+ entry on the activity of the specific PKC isoforms in coronary smooth muscle is unknown. In the present study, 45Ca2+ influx and isometric contraction were measured in porcine coronary artery strips incubated at increasing extracellular calcium concentrations ([Ca2+]e) and stimulated with prostaglandin F2alpha (PGF2alpha) or the stable thromboxane A2 analog U46619, while in parallel, the cytosolic (C) and particulate (P) fractions were examined for PKC activity and reactivity with anti-PKC antibodies using Western blot analysis. At 0-300 microM [Ca2+]e, both PGF2alpha and U46619 (10(-5) M) significantly increased PKC activity and contraction in the absence of a significant increase in 45Ca2+ influx. At 600 microM [Ca2+]e, PGF2alpha and U46619 increased P/C PKC activity ratio to a peak of 9.52 and 14.58, respectively, with a significant increase in 45Ca2+ influx and contraction. The 45Ca2+ influx--PKC activity--contraction relationship showed a 45Ca2+-influx threshold of approximately 7 micromol x kg(-1) x min(-1) for maximal PKC activation by PGF2alpha and U46619. 45Ca2+ influx > 10 micromol x kg(-1) x min(-1) was associated with further increases in contraction despite a significant decrease in PKC activity. Western blotting analysis revealed alpha-, delta-, epsilon-, and zeta-PKC in porcine coronary artery. In unstimulated tissues, alpha- and epsilon-PKC were mostly distributed in the cytosolic fraction. Significant eicosanoid-induced translocation of epsilon-PKC from the cytosolic to the particulate fraction was observed at 0 [Ca2+]e, while translocation of alpha-PKC was observed at 600 microM [Ca2+]e. Thus, a significant component of eicosanoid-induced coronary contraction is associated with significant PKC activity in the absence of significant increase in Ca2+ entry and may involve activation and translocation of the Ca2+-independent epsilon-PKC. An additional Ca2+-dependent component of eicosanoid-induced coronary contraction is associated with a peak PKC activity at submaximal Ca2+ entry and may involve activation and translocation of the Ca2+-dependent alpha-PKC. The results also suggest that a smaller PKC activity at supramaximal Ca2+ entry may be sufficient during eicosanoid-induced contraction of coronary smooth muscle.  相似文献   

14.
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model system, we have examined PKC-specific activity as well as individual PKC isozyme expression and distribution (i.e., activation status) in epithelial cells in situ. Increased PKC activity was detected in differentiating and functional cells relative to immature proliferating crypt cells. Immunofluorescence and Western blot analysis using a panel of isozyme- specific antibodies revealed that PKC alpha, beta II, delta, epsilon, and zeta are expressed in rat intestinal epithelial cells and exhibit distinct subcellular distribution patterns along the crypt-villus unit. The combined morphological and biochemical approach used permitted analysis of the activation status of specific PKC isozymes at the individual cell level. These studies showed that marked changes in membrane association and level of expression for PKC alpha, beta II, delta, and zeta occur as cells cease division in the mid-crypt region and begin differentiation. Additional changes in PKC activation status are observed with acquisition of mature function on the villus. These studies clearly demonstrate naturally occurring alterations in PKC isozyme activation status at the individual cell level within the context of a developing tissue. Direct activation of PKC in an immature intestinal crypt cell line was shown to result in growth inhibition and coincident translocation of PKC alpha from the cytosolic to the particulate subcellular fraction, paralleling observations made in situ and providing further support for a role of intestinal PKC isozymes in post-mitotic events. PKC isozymes were also found to be tightly associated with cytoskeletal elements, suggesting participation in control of the structural organization of the enterocyte. Taken together, the results presented strongly suggest an involvement of PKC isoforms in cellular processes related to growth cessation, differentiation, and function of intestinal epithelial cells in situ.  相似文献   

15.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

16.
Total PKC activity in BAEC incubated for 24 hrs in either 10% serum (FBS) or serum-deprived media (SDM) was similar. However, most of the activity (69%) in the FBS group was detected in the particulate fraction, while it was mainly in the cytosolic fraction (66%) in the SDM group. By confocal microscopy, there was diffuse cytoplasmic localization of the antibodies to the alpha and beta PKC isoforms. gamma PKC was not detected. Treatment of FBS or SDM cells with a phorbol ester resulted in an increase in PKC activity with translocation to the particulate fraction. PKC alpha immunofluorescence redistributed to the perinuclear region whereas PKC beta staining remained mostly cytosolic. Calphostin C, a PKC inhibitor, prevented the phorbol ester-induced increase in PKC activity and translocation.  相似文献   

17.
Because the expression of the isoforms of protein kinase C (PKC) in human basal keratinocytes is not understood, the expression of PKC isoforms were screened in specimens of epidermal tissue from postburn skin and the normal locations for skin grafts in patients with second or higher degrees of flame injury. The expression of individual isoform was determined by Western blot technique. Only PKC alpha and zeta were detected in the epidermal tissues of normal and postburn skin and translocation occurred in PKC alpha. Patients without antibiotic treatment after flame injury had higher expressions of PKC alpha and zeta. These findings indicate that the mechanisms of cellular differentiation and growth in postburn epidermal tissue may be related to the expression and translocation of PKC alpha induced by intra- and extracellular stimulation. These changes in PKC alpha further activate the DAG/PKC signal transduction pathways.  相似文献   

18.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

19.
To characterize age-induced effects on muscle protein kinase C (PKC) and its regulation by the steroid hormone 1,25(OH)2-vitamin D3 [1,25(OH)2D3], changes in PKC activity and the expression and translocation of the specific PKC conventional isoforms alpha and beta, novel isoforms delta, epsilon, and theta and atypical isoform zeta were studied in homogenates and subcellular fractions from skeletal muscle of young (3 months) and aged (24 months) rats treated in vitro with 1,25(OH)2D3. The hormone (10(-9) M) increased total and membrane PKC activity, within 1 min, and these effects were completely blunted in muscle from aged rats. The presence of PKC isoenzymes was shown by Western blot analysis with the use of specific antibodies. The expression of PKC alpha, beta and delta was greatly diminished in old rats, whereas age-related changes were less pronounced in the isoforms epsilon, theta and zeta. After a short exposure (1 min) of muscle to 1,25(OH)2D3, increased amounts of PKC alpha and beta in muscle membranes and reverse translocation (from membrane to cytosol) of PKC epsilon were observed only in young animals. The data indicate that, in rat muscle, ageing impairs calcium-dependent PKC (alpha and beta) and calcium-independent PKC (delta, epsilon, theta and zeta) signal transduction pathways under selective regulation by 1,25(OH)2D3.  相似文献   

20.
Stimulation of human polymorphonuclear leukocytes (PMNs) with PMA initiates a cascade of events leading to the production and release of superoxide anion (O-2), a major component in anti-bacterial defense. Generation of O-2 by PMA-stimulated PMNs occurs through the translocation and activation of protein kinase C (PKC). In this study, using freshly isolated PMNs, we examined the effect of ethanol on this response to PMA. Our results show that the basal production of O-2 was not affected by ethanol. In contrast, the response induced by PMA was potentiated by ethanol. This potentiation was observed even at high doses of PMA (200 nM) which alone had stimulated the O-2 response maximally. This enhanced response was not due to an increase of PMA uptake by PMNs. The maximal effect was obtained when the cells were preincubated with 80 mM of ethanol before PMA stimulation. Measurement of PKC activity in the cytosolic and membrane fractions showed that pretreatment of PMNs with ethanol increased twofold the PMA-stimulated PKC activity in the membrane fraction. Furthermore, Western blot analysis verified that this increase in PKC activity in the membrane fraction was linked to an increase in the translocation of PKC-alpha and -beta isoforms to the membrane. These results suggest that ethanol potentiates PMA-induced O-2 production through increasing PKC translocation and activity in PMNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号