首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic spindles isolated from the diatom Stephanopyxis turris become thiophosphorylated in the presence of ATP gamma S at specific locations within the mitotic apparatus, resulting in a stimulation of ATP-dependent spindle elongation in vitro. Here, using indirect immunofluorescence, we compare the staining pattern of an antibody against thiophosphorylated proteins to that of MPM-2, an antibody against mitosis-specific phosphoproteins, in isolated spindles. Both antibodies label spindle poles, kinetochores, and the midzone. Neither antibody exhibits reduced labeling in salt-extracted spindles, although prior salt extraction inhibits thiophosphorylation in ATP gamma S. Furthermore, both antibodies recognize a 205 kd band on immunoblots of spindle extracts. Microtubule-organizing centers and mitotic spindles label brightly with the MPM-2 antibody in intact cells. These results show that functional mitotic spindles isolated from S. turris are phosphorylated both in vivo and in vitro. We discuss the possible role of phosphorylated cytoskeletal proteins in the control of mitotic spindle function.  相似文献   

2.
Permeabilized cell models of muscle and nonmuscle cells have proven useful for examining the regulation of actin, myosin, and other cytoskeletal proteins during cell contraction. Upon addition of Ca2+ and ATP, glycerinated chick embryonic skin fibroblasts retract their tails and lamellipodia. Ca2+-independent contractions are obtained by preincubation of cell models in Ca2+ ATP gamma S, followed by EGTA and ATP addition, or by addition of trypsin-treated myosin light chain kinase that no longer requires Ca2+ for reactivation. By pretreating cells before glycerination with colchicine, it is possible to study lamellipodial contraction independent of tail contraction. Similar responses to ATP gamma S pretreatment and unregulated myosin light chain kinase are observed in cells that only contain lamellipodia. SDS-PAGE electrophoresis of glycerinated fibroblasts incubated in ATP gamma 35S and Ca2+ shows that only two major proteins are thiophosphorylated, and that one of them, a band that comigrates with the 20K MW light chain of myosin, is thiophosphorylated in a Ca2+-dependent manner. Since the rate of tail contraction is several-fold faster after Ca2+ and ATP gamma S pretreatment or incubation in excess myosin light chain kinase, myosin light chain phosphorylation may be a rate-limiting step during contraction.  相似文献   

3.
Interaction of adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) with Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. The nucleotide was slowly hydrolyzed by the ATPase at 30 degrees C at a rate of about 0.5% that of ATP hydrolysis. Whereas at 0 degrees C, ATP gamma S showed only a limited reactivity toward the ATPase in that a thiophosphorylated intermediate was formed and ADP was released, but hydrolysis of the intermediate to complete the catalytic cycle did not occur. A fairly stable analog of the E-P intermediate could thus be obtained. Presence of the thiophosphorylated intermediate was indicated by the [3H]ADP in equilibrium ATP gamma S exchange reaction and also by using [35S]ATP gamma S. When the ATPase was reacted with ATP gamma S at 0 degrees C in the presence of ferricyanide, EP-forming activity was rapidly lost. Free Ca2+ ions were required for this inactivation. Disulfide bond formation between a cysteinyl residue located near the substrate binding site and the enzyme-bound ATP gamma S or the thiophosphorylated intermediate was suggested by the fact that 2-mercaptoethanol reversed the inactivation. The reaction may prove to be a useful tool for affinity labeling of the active site of the ATPase.  相似文献   

4.
We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.  相似文献   

5.
R S Ranu 《FEBS letters》1986,208(1):117-122
The heme-regulated protein kinase, which specifically phosphorylates the 38-kDa subunit of initiation factor eIF-2, can utilize adenosine 5'-O-(3-thiotriphosphate) (ATP[gamma S]) as a substrate. The rate of thiophosphorylation is 5-6-times slower than that observed with ATP. It is of special interest that thiophosphorylated derivatives of eIF-2 are resistant to dephosphorylation catalyzed by eIF-2 phosphoprotein phosphatase. The thiophosphorylated eIF-2 is less effective in promoting protein synthesis in hemin-deficient lysates under physiological conditions. In addition, ATP[gamma S] could also be utilized by the self-phosphorylation activity intrinsically associated with HRI.  相似文献   

6.
J C Brooks  M Brooks 《Life sciences》1985,37(20):1869-1875
Permeabilized cells treated with the adenosine triphosphate analog, [35S]adenosine-5'-0-(3-thiotriphosphate) ([gamma-35S]ATP), showed thiophosphorylation of a small number of cellular proteins. A 54 kilodalton (kDa) protein was heavily thiophosphorylated in unstimulated control cells and a 43 kilodalton protein was more heavily thiophosphorylated in calcium stimulated cells. Intact cells incorporated 35S into a series of higher molecular weight proteins. Stimulation of prelabelled, permeabilized cells resulted in a loss of 35S from the cells over a 20 min period. Treatment of permeabilized cells with ATP gamma S inhibited secretion and 35S incorporation into the cells. Pretreatment with ATP gamma S resulted in subsequent inhibition of both secretion and the ability of the cells to incorporate 35S from [gamma-35S]ATP. These results indicate that the sites normally available for phosphorylation were inactivated by thiophosphorylation and were unavailable to participate in the secretory process. The inhibition of secretion associated with thiophosphorylation of these proteins suggests that they may play a role in the control of secretion by chromaffin cells.  相似文献   

7.
In the present studies, we attempted to purify the native molecular forms of the c-ras proteins (c-ras p21s) from bovine brain crude membranes and separated at least three GTP-binding proteins (G proteins) cross-reactive with the antibody recognizing all of Ha-, Ki-, and N-ras p21s. Among them, one G protein with a Mr of about 21,000 was highly purified and characterized. The Mr 21,000 G protein bound maximally about 0.6 mol of [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)/mol of protein with a Kd value of about 30 nM. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by GTP and GDP, but not by other nucleotides such as ATP, UTP, and CTP. [35S]GTP gamma S-binding to Mr 21,000 G protein was inhibited by pretreatment with N-ethylmaleimide. Mr 21,000 G protein hydrolyzed GTP to liberate Pi with a turnover number of about 0.01 min-1. Mr 21,000 G protein was not copurified with the beta gamma subunits of the G proteins regulatory for adenylate cyclase. Mr 21,000 G protein was not recognized by the antibody against the ADP-ribosylation factor for Gs. The peptide map of Mr 21,000 G protein was different from those of the G proteins with Mr values of 25,000 and 20,000, designated as smg p25A and rho p20, respectively, which we have recently purified from bovine brain crude membranes. The partial amino acid sequence of Mr 21,000 G protein was identical with that of human c-Ki-ras 2B p21. These results indicate that Mr 21,000 G protein is bovine brain c-Ki-ras 2B p21 and that c-Ki-ras 2B p21 is present in bovine brain membranes.  相似文献   

8.
We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.  相似文献   

9.
Maturation-promoting factor (MPF) activity has been demonstrated for the first time in fish oocytes. We purified MPF from a 100,000g supernatant of crushed, naturally spawned carp oocytes using four chromatography columns: Q-Sepharose Fast-Flow, p13suc1-affinity Sepharose, Mono S, and Superose 12. The final preparation was purified over 1000-fold with a recovery of about 1%. On Superose 12, MPF eluted as a single peak with an apparent molecular weight of 100 kDa. SDS-PAGE analysis of the active fractions after Superose 12 revealed the presence of four proteins of 33, 34, 46, and 48 kDa. A monoclonal antibody against the PSTAIR sequence of cdc2 kinase recognized the 33- and 34-kDa proteins for which the 46- and 48-kDa proteins are endogenous substrates. The 46- and 48-kDa proteins were recognized by a monoclonal antibody against Escherichia coli-produced goldfish cyclin B, but not by an anti-cyclin A antibody. When oocytes were matured in the presence of 32P, the labeling was seen with the 34-kDa protein, but not with the 33-kDa protein. The 34-kDa protein corresponded to the MPF activity, but the 33-kDa protein did not. These findings indicate that carp MPF is a complex of cdc2 kinase and cyclin B, and further that active MPF contains the phosphorylated form of cdc2 kinase.  相似文献   

10.
Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilized PC12 cells was ATP- and Ca2+-dependent but resistant to calmodulin antagonists. Half-maximum secretion was obtained in 0.75 microM Ca2+. Permeabilized PC12 cells were incubated with ATP gamma S in the absence of Ca2+, the ATP gamma S was removed, and norepinephrine secretion was determined. Preincubation with ATP gamma S increased the amount of norepinephrine secreted in the absence of Ca2+, but it had no effect on the amount released in the presence of Ca2+. After a 15-min preincubation in 1 mM ATP gamma S, there was almost as much secretion in the absence of Ca2+ as in its presence. Inclusion of ATP in the preincubation inhibited the effect of ATP gamma S. Ca2+ stimulated the rate of modification by ATP gamma S as brief preincubations with ATP gamma S in the presence of Ca2+ resulted in higher levels of Ca2+-independent secretion than did preincubations with ATP gamma S in the absence of Ca2+. Similarly, brief preincubations of permeabilized cells with ATP in the presence of Ca2+ resulted in elevated levels of Ca2+-independent secretion. Secretion of norepinephrine from ATP gamma S-treated cells was ATP-dependent. These results suggest that norepinephrine secretion by PC12 cells is regulated by a Ca2+-dependent phosphorylation. Once this phosphorylation has occurred, secretion is still ATP-dependent, but it no longer requires Ca2+.  相似文献   

11.
L Wordeman  W Z Cande 《Cell》1987,50(4):535-543
Mitotic spindles isolated from the diatom Stephanopyxis turris consist of two half-spindles of closely interdigitating microtubules that slide relative to one another in the presence of ATP, reinitiating spindle elongation (anaphase B) in vitro. Purified spindles that have been exposed to ATP-gamma-S undergo ATP-dependent reactivation more readily than do control spindles. Thiophosphorylated proteins in such spindles are located in the spindle midzone, kinetochores, and a portion of the pole complex. One major thiophosphorylated peptide of 205 kd is detected in extracts prepared from spindles labeled with [35S]ATP-gamma-S, and is also localized in the spindle midzone by using an antibody that recognizes thiophosphorylated proteins. It is likely that this 205 kd peptide is either a positive regulator or mechanochemical transducer of microtubule sliding when it is in a phosphorylated state.  相似文献   

12.
Protein phosphorylation during development of sea urchin eggs from fertilization to first cleavage was examined by labeling cells with specific antiphosphoprotein antibodies. Indirect immunofluorescence staining with monoclonal antithiophosphoprotein antibody (Gerhart et al.: Cytobios 43:335-347, 1985) has revealed that nuclei as well as centrosomes, kinetochores, and midbodies were specifically thiophosphorylated in developing eggs incubated with adenosine 5'-O (3-thiotriphosphate) (ATP-gamma-S). The phosphorylation reaction required Mg2+ but was not dependent on cAMP or calmodulin in detergent-extracted models. Centrosomes were purified by fractionation of isolated mitotic spindles with 0.5 M KCl extraction. The thiophosphoproteins were retained in the purified centrosomes and the antibody recognized a major 225-Kd polypeptide on immunoblots. In an independent preparation, a monoclonal antiphosphoprotein antibody (CHO3) was found also to react with mitotic poles and stained a 225-Kd polypeptide, confirming the centrosome specificity of this protein. Immunoelectron microscopy showed that the 225-Kd thiophosphoprotein was found at mitotic poles associated with granules to which mitotic microtubules were directly attached. Unlike centrosomes in permeabilized eggs, those in isolated spindles could not be thiophosphorylated, possibly due to inactivation or loss of either phosphorylation enzymes or cofactors, or both, during isolation. The immunofluorescence labeling of thiophosphate could be inhibited by ATP and AMP.PNP in a concentration-dependent manner. Exogenous ATP could abolish thiophosphate-staining more effectively when added with phosphatase inhibitors, suggesting a dynamic state in which centrosomal proteins are being phosphorylated and dephosphorylated in rapid succession by the action of protein kinase(s) and phosphatase(s).  相似文献   

13.
Identification of GTP-binding proteins in the plasma membrane of higher plants   总被引:12,自引:0,他引:12  
Antisera raised against a highly conserved amino acid sequence (G alpha-common peptide) of animal Gs alpha, Gi alpha, Go alpha and Gt alpha recognize, in plasma membranes of several higher plants, sets of proteins of Mr = 37 and 31 kDa (Vicia faba), 36 and 31 kDa (Arabidopsis thaliana) and 38 and 34 kDa (Commelina communis). The A. thaliana proteins were solubilized and partially purified. They bind [35S]GTP gamma S with high affinity (apparent Kd approximately 10 nM) and, with lower affinity, GTP but not the other nucleotides tested (ATP, CTP, ITP, UTP).  相似文献   

14.
The major human vitamin K-dependent proteins were purified from plasma using immunoadsorbents made with antibodies specific for each protein. Monoclonal antibodies to Factor VII, Factor IX, Factor X, Protein C, and Protein S were prepared from mice immunized with isolated vitamin K-dependent antigens. Purified monoclonal antibodies and a purified burro polyclonal anti-prothrombin immunoglobulin were individually coupled to Sepharose and used in a tandem series of columns to purify each of the vitamin K-dependent proteins from eluates of barium citrate precipitates of plasma. The proteins were eluted from the columns by sodium thiocyanate and retained functional activity following dialysis. Prothrombin, Factor VII, Factor IX, Factor X and Protein C were essentially homogeneous as judged by NaDodSO4-PAGE; Protein S was isolated as a Protein S-C4b binding protein complex. These results indicate the utility of monoclonal antibody immunoadsorbents for purifying the human vitamin K-dependent proteins and represent a considerable simplification over other purification schemes.  相似文献   

15.
目的:重组表达融合GST或MBP标签的单链抗体scFv-GCN4,对其进行分离纯化,并检测其生物学活性。方法:构建pBAD-MBP-scFv-GCN4及pBAD-GST-scFv-GCN4表达载体,使用大肠杆菌(Escherichia coli)Top10菌株表达并亲和纯化重组蛋白MBP-scFv-GCN4及GST-scFv-GCN4。构建p ET30a-Nus-GCN4载体,使用E.coliBL21(DE3)菌株表达重组蛋白Nus-GCN4及Nus。以重组的GCN4为特异性抗原,通过Pull-down技术和WesternBlot技术,检测MBP-scFv-GCN4及GST-scFv-GCN4的抗体活性及特异性。结果:重组菌株E.coli Top10可高效表达可溶性的MBP-scFv-GCN4和GST-scFv-GCN4蛋白,通过亲和纯化,均得到了高纯度的重组蛋白。重组菌株E.coliBL21(DE3)可高效表达可溶性的Nus与Nus-GCN4蛋白。Pull-down及WesternBlot结果显示,重组蛋白MBP-scFv-GCN4及GST-scFv-GCN4均可以高效、特异地识别重组的GCN4抗原。结论:重组抗体GST-scFv-GCN4及MBP-scFv-GCN4均可在E.coli中高效表达,并且具有良好的抗体活性及特异性。  相似文献   

16.
We have observed that ATP induces a second type of oestradiol binding site with slightly lower affinity (Ka 3.3 x 10(8) M-1) and lower sedimentation coefficient (4 S) in cytosol from immature lamb uterus and MCF-7 cells. A factor isolated from immature lamb uterine nuclear extract was found to decrease the steroid binding activity of oestradiol receptor that had been purified by heparin Sepharose and oestradiol-Sepharose chromatography. Inhibition of this factor by known phosphatase inhibitors, indicated that this factor may be a phosphatase. Another factor isolated from immature lamb uterine cytosol was found to enhance the effect of ATP on receptor binding in cytosol from immature lamb uterus and MCF-7 cells. The ability of this factor to phosphorylate a partially purified cytosol receptor from immature lamb uterus when incubated with [gamma 32P]ATP, indicates that this factor is a phosphokinase. The phosphorylated products after labeling with [3H]tamoxifen aziridine were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Three phosphorylated proteins with molecular weights 150, 97, and 67 kDa bound [3H]tamoxifen aziridine. Ammonium sulphate precipitated cytosol oestradiol receptor from immature lamb uterus was inactivated with receptor inactivating factor and then reactivated with receptor activating factor in the presence of [gamma 32P]ATP and substantially affinity labelled with [3H]tamoxifen aziridine. The affinity labelled oestradiol receptor was immunopurified with the monoclonal antibody JS 34/32. Three proteins with molecular weights 67, 50 and 43 kDa specifically bound [3H]tamoxifen aziridine and only 43 kDa receptor fragment was phosphorylated. The relevance of inactivation/reactivation of oestradiol receptor to the dephosphorylation/phosphorylation of receptor is discussed.  相似文献   

17.
Histidine-aspartic acid phosphotransfer pathways are central components of prokaryotic signal transduction pathways and are also found in many eukaryotes. Tools to study histidine kinases, however, are currently quite limited. In this article, we present a new tool to study histidine-aspartic acid phosphotransfer pathways. We show that many histidine kinases will accept ATPγS as a substrate to form a stable thiophosphohistidine even when they do not form stable phosphohistidines using the natural substrate ATP. An antibody that has previously been used to detect thiophosphorylated serine, threonine, and tyrosine residues is shown to recognize thiophosphohistidine and thiophosphoaspartic acid residues. Histidine kinase autothiophosphorylation is regulated by other protein sensor domains in the same way as autophosphorylation, and thiophosphate is transferred to downstream aspartic acid containing response regulators.  相似文献   

18.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

19.
Metaphase protein phosphorylation in Xenopus laevis eggs.   总被引:17,自引:6,他引:11       下载免费PDF全文
Cytoplasmic extracts of metaphase (M-phase)-arrested Xenopus laevis eggs support nuclear envelope breakdown and chromosome condensation in vitro. Induction of nuclear breakdown is inhibited by AMPP(NH)P, a nonhydrolyzable ATP analog, but not by ATP or gamma-S-ATP, a hydrolyzable ATP analog, suggesting that protein phosphorylation may be required for M-phase nuclear events in vitro. By addition of [gamma-32P]ATP, we have identified in cytoplasmic extracts and in intact eggs at least six phosphoproteins that are present during M-phase but absent in G1/S-phase. These phosphoproteins also appear in response to partially purified preparations of maturation-promoting factor. A subset of these proteins are thiophosphorylated by gamma-S-ATP under conditions that promote nuclear envelope breakdown and chromosome condensation. Each of these proteins is phosphorylated on serine and threonine, and one, a 42-kilodalton protein, is also phosphorylated on tyrosine both in extracts and in intact eggs. These results indicate that activation of protein kinases accounts for at least part of the increased phosphorylation in M-phase and that both protein-serine-threonine kinases and protein-tyrosine kinases may play a role in controlling M-phase nuclear behavior.  相似文献   

20.
The preparation of anti-OSCP monoclonal antibodies is described for the first time. One of these antibodies prevents the activating effect of OSCP in reconstitution experiments. These antibodies and antibodies previously obtained against the alpha- and beta-subunits of pig heart mitochondrial F1-ATPase have been used to look for well conserved epitopes in various species. One anti-beta antibody can recognize all species tested while the anti-OSCP antibodies only recognize the pig or beef enzyme. The above anti-beta antibody inhibits ATP synthesis without modifying the rate of ATP hydrolysis. This antibody also prevents the ADP-induced hysteretic inhibition of F1-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号