首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of the IIA domain of the glucose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) from Bacillus subtilis has been determined at 2.2-A resolution. Refinement of the structure is in progress, and the current R-factor is 0.201 (R = sigma h parallel Fo magnitude of - Fc parallel/sigma h magnitude of Fo, where magnitude of Fo and magnitude of Fc are the observed and calculated structure factor amplitudes, respectively) for data between 6.0- and 2.2-A resolution for which F greater than or equal to 2 sigma (F). This is an antiparallel beta-barrel structure that incorporates "Greek key" and "jellyroll" topological motifs. A shallow depression is formed at the active site by part of the beta-sheet and an omega-loop flanking one side of the sheet. His83, the histidyl residue which is the phosphorylation target of HPr and which transfers the phosphoryl group to the IIB domain of the permease, is located at the C-terminus of a beta-strand. The N epsilon atom is partially solvated and also interacts with the N epsilon atom of a second histidyl residue, His68, located at the N-terminus of an adjacent beta-strand, suggesting they share a proton. The geometry of the hydrogen bond is imperfect, though. Electrostatic interactions with other polar groups and van der Waals contacts with the side chains of two flanking phenylalanine residues assure the precise orientation of the imidazole rings. The hydrophobic nature of the surface around the His83-His68 pair may be required for protein-protein recognition by HPr or/and by the IIB domain of the permease. The side chains of two aspartyl residues, Asp31 and Asp87, are oriented toward each other across a narrow groove, about 7 A from the active-site His83, suggesting they may play a role in protein-protein interaction. A model of the phosphorylated form of the molecule is proposed, in which oxygen atoms of the phosphoryl group interact with the side chain of His68 and with the main-chain nitrogen atom of a neighboring residue, Val89. The model, in conjunction with previously reported site-directed mutagenesis experiments, suggests that the phosphorylation of His83 may be accompanied by the protonation of His68. This may be important for the interaction with the IIB domain of the permease and/or play a catalytic role in the phosphoryl transfer from IIA to IIB.  相似文献   

2.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

3.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

4.
Biochemical, immunological, and sequence analyses demonstrated that the glucose permease of Bacillus subtilis, the glucose-specific Enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system, is a single polypeptide chain with a C-terminal Enzyme III-like domain. A flexible hydrophilic linker, similar in length and amino acid composition to linkers previously identified in other regulatory or sensory transducing proteins, functions to tether the Enzyme IIIGlc-like domain of the protein to the membrane-embedded Enzyme IIGlc. Evidence is presented demonstrating that the Enzyme IIIGlc-like domain of the glucose permease plays a dual role and functions in the transport and phosphorylation of both glucose and sucrose. The sucrose permease appears to lack a sucrose-specific Enzyme III-like domain or a separate, soluble IIIScr protein. Enzyme IIScr was capable of utilizing the IIIGlc-like domain of the glucose permease regardless of whether the IIIGlc polypeptide was provided as a purified, soluble protein, as a membrane-bound protein within the same membrane as Enzyme IIScr, or as a membrane-bound protein within membrane fragments different from those bearing Enzyme IIScr. These observations suggest that the IIIGlc-like domain is an autonomous structural unit that assumes a conformation independent of the hydrophobic, N-terminal intramembranal domain of Enzyme IIGlc. Preferential uptake and phosphorylation of glucose over sucrose has been demonstrated by both in vivo transport studies and in vitro phosphorylation assays. Addition of the purified IIIGlc-like domain strongly stimulated the phosphorylation of sucrose, but not that of glucose, in phosphorylation assays that contained the two sugars simultaneously. The results suggest that the preferential uptake of glucose over sucrose is determined by competition of the corresponding sugar-specific permeases for the common P approximately IIIGlc/Scr domain.  相似文献   

5.
6.
7.
NAD+-synthetase is a ubiquitous enzyme catalyzing the last step in the biosynthesis of NAD+. Mutants of NAD+ synthetase with impaired cellular functions have been isolated, indicating a key role for this enzyme in cellular metabolism. Crystals of the enzyme from Bacillus subtilis suitable for x-ray crystallographic investigation have been grown from polyethylene glycol solutions. Investigation on the structural organization of NAD+ synthetase, an enzyme fundamental for NAD+ biosynthesis, and belonging to the recently characterized amidotransferase enzymatic family, will provide more insight into the catalytic mechanism of deamido-NAD+ → NAD+ conversion, a biosynthetic process that is a potential target for the development of antibiotic compounds against Bacillus sp. and related bacteria. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The glucose effect in Bacillus subtilis   总被引:2,自引:0,他引:2  
An analysis of the glucose downshift mechanism in Bacillus subtilis has shown that the depression of catabolic enzymes characteristic of the 'glucose effect' includes isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase. Additionally, phosphofructokinase undergoes what appears to be a reversible modification regulated by glucose transport.  相似文献   

9.
10.
An insertion mutation was isolated that resulted in derepressed expression of the Bacillus subtilis dipeptide transport operon (dpp) during the exponential growth phase in rich medium. DNA flanking the site of insertion was found to encode an operon (codVWXY) of four potential open reading frames (ORFs). The deduced product of the codV ORF is similar to members of the λ Int family; CodW and CodX are homologous to HsIV and HsIU, two putative heat-shock proteins from Escherichia coli, and to LapC and LapA, two gene products of unknown function from Pasteurella haemolytica. CodX also shares homology with a family of ATPases, including CIpX, a regulatory subunit of the E. coli ClpP protease. CodY does not have any homologues in the databases. The insertion mutation and all previously isolated spontaneous cod mutations were found to map In codY. In-frame deletion mutations in each of the other cod genes revealed that only codY is required for repression of dpp in nutrient-rich medium. The cody mutations partially relieved amino acid repression of the histidine utilization (hut) operon but had no effect on regulation of certain other early stationary phase-induced genes, such as spoVG and gsiA.  相似文献   

11.
[目的]在体外研究surfactin合成酶的A结构域,为获得新的surfactin类似物奠定基础.[方法]本文从枯草芽胞杆菌(Bacillus subtilis)fmbj中克隆出surfactin合成酶第7个模块的A结构域基因(SrfAC-A),与表达质粒pET-23a相连后在大肠杆菌表达系统中表达,用Ni-NTA亲和柱对重组蛋白SrfAC-A进行分离纯化后测定其活性.[结果]克隆所得的A结构域对Ile有选择活性,而对其他氨基酸基本无活性.[结论]Surfactin合成酶中的A结构域能在体外独立行使其选择底物氨基酸的功能.  相似文献   

12.
The arginine-dependent repressor/activator AhrC from Bacillus subtilis has been crystallized in space group C222(1), with unit cell dimensions a = 229.8 A, b = 72.8 A, c = 137.7 A and one aporepressor hexamer per asymmetric unit. Preliminary X-ray photographs show measurable intensities beyond 3.0 A.  相似文献   

13.
The HSP100/AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. We present here the backbone and side-chain assignments of the N-terminal repeat domain (residues 1–145) of ClpC from Bacillus subtilis. Douglas J. Kojetin and Patrick D. McLaughlin have equally contributed.  相似文献   

14.
The pectate lyase (EC 4.2.2.9) from Bacillus subtilis has been crystallized. Crystals of form 1, grown by the hanging drop method using polyethylene glycol as precipitant, diffract to at least 2.4 A resolution. They belong to the spacegroup P2(1) with a = 132.9 A, b = 41.2 A, c = 156.8 A and beta = 114.9 degrees with probably four molecules in the asymmetric unit. A second crystal form grown from 2-methyl-2,4-pentandiol also belongs to the spacegroup P2(1) with a = 55.0 A, b = 88.1 A, c = 50.2 A and beta = 109.0 degrees. These crystals diffract to at least 2.0 A and have one molecule in the asymmetric unit. Both crystal forms are suitable for the determination of high-resolution structures.  相似文献   

15.
16.
Glucose is taken up in Bacillus subtilis via the phosphoenolpyruvate:glucose phosphotransferase system (glucose PTS). Two genes, orfG and ptsX, have been implied in the glucose-specific part of this PTS, encoding an Enzyme IIGlc and an Enzyme IIIGlc, respectively. We now show that the glucose permease consists of a single, membrane-bound, polypeptide with an apparent molecular weight of 80,000, encoded by a single gene which will be designated ptsG. The glucose permease contains domains that are 40-50% identical to the IIGlc and IIIGlc proteins of Escherichia coli. The B. subtilis IIIGlc domain can replace IIIGlc in E. coli crr mutants in supporting growth on glucose and transport of methyl alpha-glucoside. Mutations in the IIGlc and IIIGlc domains of the B. subtilis ptsG gene impaired growth on glucose and in some cases on sucrose. ptsG mutants lost all methyl alpha-glucoside transport but retained part of the glucose-transport capacity. Residual growth on glucose and transport of glucose in these ptsG mutants suggested that yet another uptake system for glucose existed, which is either another PT system or regulated by the PTS. The glucose PTS did not seem to be involved in the regulation of the uptake or metabolism of non-PTS compounds like glycerol. In contrast to ptsl mutants in members of the Enterobacteriaceae, the defective growth of B. subtilis ptsl mutants on glycerol was not restored by an insertion in the ptsG gene which eliminated IIGlc. Growth of B. subtilis ptsG mutants, lacking IIGlc, was not impaired on glycerol. From this we concluded that neither non-phosphorylated nor phosphorylated IIGlc was acting as an inhibitor or an activator, respectively, of glycerol uptake and metabolism.  相似文献   

17.
Bacterial oligopeptide permeases are members of the large family of ATP binding cassette transporters and typically import peptides of 3 to 5 amino acids, apparently independently of sequence. Oligopeptide permeases are needed for bacteria to utilize peptides as nutrient sources and are sometimes involved in signal transduction pathways. The Bacillus subtilis oligopeptide permease stimulates competence development and the initiation of sporulation, at least in part, by importing specific signaling peptides. We isolated rare, partly functional mutations in B. subtilis opp. The mutants were resistant to a toxic tripeptide but still retained the ability to sporulate and/or become competent. The mutations, mostly in the oligopeptide binding protein located on the cell surface, affected residues whose alteration appears to change the specificity of oligopeptide transport.  相似文献   

18.
Homolactic fermentation from glucose and cellobiose using Bacillus subtilis   总被引:1,自引:0,他引:1  

Backgroung  

Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilisis a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe) by the FDA. B. subtilisproduces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtiliscould be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilisgrows using cellobiose as substrate.  相似文献   

19.
A moderately thermostable esterase from Geobacillus stearothermophilus (BsteE) and its homolog from Bacillus subtilis (BsubE) show a high structural similarity with more than 95 % homology and 74 % amino acid identity. Interestingly, their thermal stability differs significantly by 30 °C in their melting temperature. In order to identify the positions that are responsible for this difference, most of the flexible amino acids assumed to confer instability were found to be in the cap region. For this reason, a 30 amino acid long cap domain fragment containing ten differing positions derived from BsteE was incorporated into the homologous gene encoding for the more labile BsubE by spliced overlap-extension PCR. The melting temperature of the two wild-type esterases and the mutant was evaluated by circular dichroism spectroscopy, while the kinetic parameters and the stability were determined with a photometric assay. The cap domain mutant maintained its activity, with a catalytic efficiency more similar to BsteE, while it exhibited an increase of the melting temperature by 4 °C compared to BsubE. Additional point mutations based on the differences of the parent enzymes gave a further increase of the thermostability up to 11 °C compared to BsubE; however, a significant reduction in activity was observed.  相似文献   

20.
Abstract A mutant of Bacillus subtilis has been isolated which is devoid of glucose dehydrogenase. This mutant is unable to germinate on a mix of glucose, fructose, asparagine, and KCl, which is a normal germination trigger for wild-type strains. Transfer of the genotype by transformation to isogenic strains confers the same properties on these transformed strains. These observations strongly implicate glucose dehydrogenase in germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号