首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.  相似文献   

2.
Superoxide, a potentially toxic by-product of cellular metabolism, may contribute to tissue injury in many types of human disease. Here we show that a tris-malonic acid derivative of the fullerene C60 molecule (C3) is capable of removing the biologically important superoxide radical with a rate constant (k(C3)) of 2 x 10(6) mol(-1) s(-1), approximately 100-fold slower than the superoxide dismutases (SOD), a family of enzymes responsible for endogenous dismutation of superoxide. This rate constant is within the range of values reported for several manganese-containing SOD mimetic compounds. The reaction between C3 and superoxide was not via stoichiometric "scavenging," as expected, but through catalytic dismutation of superoxide, indicated by lack of structural modifications to C3, regeneration of oxygen, production of hydrogen peroxide, and absence of EPR-active (paramagnetic) products, all consistent with a catalytic mechanism. A model is proposed in which electron-deficient regions on the C60 sphere work in concert with malonyl groups attached to C3 to electrostatically guide and stabilize superoxide, promoting dismutation. We also found that C3 treatment of Sod2(-/-) mice, which lack expression of mitochondrial manganese superoxide dismutase (MnSOD), increased their life span by 300%. These data, coupled with evidence that C3 localizes to mitochondria, suggest that C3 functionally replaces MnSOD, acting as a biologically effective SOD mimetic.  相似文献   

3.
Bacillus subtilis was found to possess one detectable superoxide dismutase (Sod) in both vegetative cells and spores. The Sod activity in vegetative cells was maximal at stationary phase. Manganese was necessary to sustain Sod activity at stationary phase, but paraquat, a superoxide generator, did not induce the expression of Sod. The specific activity of purified Sod was approximately 2,600 U/mg of protein, and the enzyme was a homodimer protein with a molecular mass of approximately 25,000 per monomer. The gene encoding Sod, designated sodA, was cloned by the combination of several PCR methods and the Southern hybridization method. DNA sequence analysis revealed the presence of one open reading frame consisting of 606 bp. Several putative promoter sites were located in the upstream region of sodA. The deduced amino acid sequence showed high homology with other bacterial manganese Sods. Conserved regions in bacterial manganese Sod could also be seen. The phenotype of double mutant Escherichia coli sodA sodB, which could not grow in minimal medium without supplemental amino acids, was complemented by the expression of B. subtilis sodA.  相似文献   

4.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from a higher plant for the first time. The enzyme was isolated fromPisum sativum leaf extracts by thermal fractionation, ammonium sulfate salting out, ion-exchange and gel-filtration column chromatography, and preparative polyacrylamide gel electrophoresis. Pure manganese superoxide dismutase had a specific activity of about 3,000 U mg-1 and was purified 215-fold, with a yield of 1.2 mg enzyme per kg whole leaf. The manganese superoxide dismutase had a molecular weight of 94,000 and contained one g-atom of Mn per mol of enzyme. No iron and copper were detected. Activity reconstitution experiments with the pure enzyme ruled out the possibility of a manganese loss during the purification procedure. The stability of manganese superoxide dismutase at-20°C, 4°C, 25°C, 50°C, and 60°C was studied, and the enzyme was found more labile at high temperatures than bacterial manganese superoxide dismutases and iron superoxide dismutases from an algal and bacterial origin.Abbreviations NBT nitro blue tetrazolium - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

5.
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.  相似文献   

6.
Guo FX  Shi-Jin E  Liu SA  Chen J  Li DC 《Mycologia》2008,100(3):375-380
A thermostable superoxide dismutase (SOD) from the culture supernatant of a thermophilic fungus Chaetomium thermophilum strain CT2 was purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-sepharose, phenyl-sepharose hydrophobic interaction chromatography. The pure SOD had a specific activity of 115.77 U/mg of protein and was purified 7.49-fold, with a yield of 14.4%. The molecular mass of a single band of the enzyme was estimated to be 23.5 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 94.4 kDa, indicating that this enzyme was composed of four identical subunits of 23.5 kDa each. The SOD was found to be inhibited by NaN3, but not by KCN and H2O2. Atomic absorption spectrophotometric analysis showed that the content of Mn was 2.05 microg/mg of protein and Fe was not detected in the purified enzyme. These results suggested that the SOD in C. thermophilum was the manganese superoxide dismutase type. N-terminal amino acid sequencing (10 residues) was KX (X is uncertain) TLPDLKYD. The N-terminal amino acid sequencing homologies to other MnSod also indicated that it was a manganese-containing superoxide dismutase. The SOD exhibited maximal activity at pH 7.5 and optimum temperature at 60 C. It was thermostable at 50 and 60 C and retained 60% activity after 60 min at 70 C. The half-life of the SOD at 80 C was approximately 25 min and even retained 20% activity after 30 min at 90 C.  相似文献   

7.
Manganese superoxide dismutase is an essential component of the mitochondrial antioxidant defense system of most eukaryotes. In the present study, we used a reverse-genetics approach to assess the contribution of the Cryptococcus neoformans manganese superoxide dismutase (Sod2) for antioxidant defense. Strains with mutations in the SOD2 gene exhibited increased susceptibility to oxidative stress as well as poor growth at elevated temperatures compared to isogenic wild-type strains. The sod2Delta mutants were also avirulent in a murine model of inhaled cryptococcosis. Reconstitution of a sod2Delta mutant restored Sod2 activity, eliminated the oxidative stress and temperature-sensitive (ts) phenotypes, and complemented the virulence phenotype. Characterization of the ts phenotype revealed a dependency between Sod2 antioxidant activity and the ability of C. neoformans cells to adapt to growth at elevated temperatures. The ts phenotype could be suppressed by the addition of either ascorbic acid (10 mM) or Mn salen (200 muM) at 30 degrees C, but not at 37 degrees C. Furthermore, sod2Delta mutant cells that were incubated for 24 h at 37 degrees C under anaerobic, but not aerobic, conditions were viable when shifted to the permissive conditions of 25 degrees C in the presence of air. These data suggest that the C. neoformans Sod2 is a major component of the antioxidant defense system in this human fungal pathogen and that adaptation to growth at elevated temperatures is also dependent on Sod2 activity.  相似文献   

8.
Mitochondrial manganese-containing superoxide dismutase was purified around 112-fold with an overall yield of 1.1% to apparent electrophoretic homogeneity from the dimorphic pathogenic fungus, Candida albicans. The molecular mass of the native enzyme was 106 kDa and the enzyme was composed of four identical subunits with a molecular mass of 26 kDa. The enzyme was not sensitive to either cyanide or hydrogen peroxide. The N-terminal amino acid sequence alignments (up to the 18th residue) showed that the enzyme has high similarity to the other eukaryotic manganese-containing superoxide dismutases. The gene sod2 encoding manganese-containing superoxide dismutase has been cloned using a product obtained from polymerase chain reaction. Sequence analysis of the sod2 predicted a manganese-containing superoxide dismutase that contains 234 amino acid residues with a molecular mass of 26173 Da, and displayed 57% sequence identity to the homologue of Saccharomyces cerevisiae. The deduced N-terminal 34 amino acid residues may serve as a signal peptide for mitochondrial translocation. Several regulatory elements such as stress responsive element and haem activator protein 2/3/4/5 complex binding sites were identified in the promoter region of sod2. Northern analysis with a probe derived from the cloned sod2 revealed a 0.94-kb band, which corresponds approximately to the expected size of mRNA deduced from sod2.  相似文献   

9.
Oxidative damage to cell macromolecules by reactive oxygen species is associated with numerous diseases and aging. In Drosophila, RNAi-mediated silencing of the mitochondrial antioxidant manganese superoxide dismutase (SOD2) throughout the body dramatically reduces life span, accelerates senescence of locomotor function, and enhances sensitivity to applied oxidative stress. Here, we show that Sod2 knockdown in the musculature alone is sufficient to cause the shortened life span and accelerated locomotor declines observed with knockdown of Sod2 throughout the body, indicating that Sod2 deficiency in muscle is central to these phenotypes. Knockdown of Sod2 in the muscle also increased caspase activity (a marker for apoptosis) and caused a mitochondrial pathology characterized by swollen mitochondria, decreased mitochondrial content, and reduced ATP levels. These findings indicate that Sod2 plays a crucial role in the musculature in Drosophila and that the consequences of SOD2 loss in this tissue extend to the viability of the organism as a whole.  相似文献   

10.
11.
Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro . ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro . The reduced viability of sod5 Δ/Δ and sod4 Δ/Δ sod5 Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox −/ − mice defective in the oxidative burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans , and perhaps many other microbial pathogens, can evade host immune surveillance in vivo .  相似文献   

12.
Previous studies revealed a close connection between heat shock and manganese-dependent superoxide dismutase (SOD2) in eukaryotes. This paper shows that SOD mimics based on manganese complexes caused an increase in thermotolerance for a mutant fission yeast deficient in mitochondrial superoxide dismutase. Manganese compounds used for tests are SOD mimics, from two different classes: salen manganese (EUK-8) and Mn porphyrin (Mn(III)TE-2-PyP(5+)). The tests were conducted using a Schizosaccharomyces pombe model, comparing the viability of two strains at chronic heat stress (37°C)--a wild type versus a strain with the mitochondrial superoxide dismutase gene deleted [SOD2(-)]. The presence of massive free radical species in S. pombe SOD2(-) was demonstrated using a luminol-enhanced chemiluminescence test derived from a menadione-mediated survival protocol. Conclusions: Survival tests revealed that the SOD2-deleted S. pombe is about 100 times more sensitive to heat stress than the wild-type strain. This survival deficit can be corrected by EUK-8 and Mn(III)TE-2-PyP(5+) to almost the same degree but not by manganese chloride II (MnCl(2)). Using a simple spot assay for viability testing, this new model proved to be an easy alternative for the initial estimation of manganese SOD mimics efficiency.  相似文献   

13.
A variety of manganese-containing coordination compounds, frequently termed superoxide dismutase (SOD) mimics, have been reported to have SOD activity in vitro and to be effective at improving conditions related to increased oxidative stress in multicellular organisms. We tested the effectiveness of several of these compounds in substituting for authentic SOD enzymes in two simple systems--the prokaryote Escherichia coli and the single-celled eukaryote, Saccharomyces cerevisiae--where strains are available that completely lack cytoplasmic SOD activity and are thus significantly impaired in their ability to grow aerobically. Most of the compounds tested, including Euk-8 and Euk-134, manganese salen derivatives developed by Eukarion; M40403, a manganese complex of a bis(cyclohexylpyridine)-substituted macrocyclic ligand developed by Metaphore; and several manganese porphyrin derivatives, were ineffective in both systems. Only the manganese tetrapyridyl porphyrin complex MnTM-2-PyP and two close relatives were effective in rescuing aerobic growth of E. coli lacking SOD, and, in the case of sod1Delta yeast, only MnTM-2-PyP itself was fully effective. Surprisingly, several compounds reported to be beneficial in other in vivo model systems (Euk-8, Euk-134, M40403) were actually toxic to these organisms lacking SOD, although they had no effect on the wild-type parent strains. Our results suggest the possibility that the beneficial effects of some of the so-called "SOD mimic drugs" may be due to some property other than in vivo superoxide dismutase activity.  相似文献   

14.
Metalloporphyrins improve the survival of Sod2-deficient neurons   总被引:1,自引:0,他引:1  
Patel MN 《Aging cell》2003,2(4):219-222
The objective of this study was to determine whether metalloporphyrin catalytic antioxidants influence the survival of neuronal cultures in an in vitro model of age-related mitochondrial oxidative stress. Neuronal cultures were prepared from cerebral cortices of manganese superoxide dismutase (MnSOD or Sod2) knockout (homozygous -/-, heterozygous -/+ or wild-type +/+) mice. The ability of catalytic antioxidants, manganese tetrakis-(4-benzoic acid) porphyrin (MnTBAP) and manganese tetrakis-(N-ethyl-2-pyridyl) porphyrin (MnTE-2-PyP) to influence the survival of cultured cerebrocortical neurones from Sod2-replete (+/+) and Sod2-deficient (+/- or -/-) mice was assessed. Sod2-/- cultures showed accelerated cell death in serum-free conditions when grown in ambient oxygen. MnTBAP and MnTE-2-PyP delayed the death of Sod2-/- cultures and improved the survival of Sod2+/+ and Sod2+/- cultures in serum-free conditions. The results suggest that metalloporphyrin antioxidants can delay neuronal death resulting specifically from increased mitochondrial oxidative stress. Furthermore, Sod2-deficient neuronal cultures provide a simple model system to screen the biological efficacy of mitochondrial antioxidants.  相似文献   

15.
Copper is an essential cofactor of two mitochondrial enzymes: cytochrome c oxidase (COX) and Cu-Zn superoxide dismutase (Sod1p). Copper incorporation into these enzymes is facilitated by metallochaperone proteins which probably use copper from a mitochondrial matrix-localized pool. Here we describe a novel conserved mitochondrial metallochaperone-like protein, Cmc1p, whose function affects both COX and Sod1p. In Saccharomyces cerevisiae, Cmc1p localizes to the mitochondrial inner membrane facing the intermembrane space. Cmc1p is essential for full expression of COX and respiration, contains a twin CX9C domain conserved in other COX assembly copper chaperones, and has the ability to bind copper(I). Additionally, mutant cmc1 cells display increased mitochondrial Sod1p activity, while CMC1 overexpression results in decreased Sod1p activity. Our results suggest that Cmc1p could play a direct or indirect role in copper trafficking and distribution to COX and Sod1p.  相似文献   

16.
1. Growth of Chlorella sorokiniana in the presence of 7.5 mM sulfite, which halved the growth rate while doubling the superoxide dismutase (SOD; EC 1.15.1.1) content per cell, rendered the cells resistant to the toxic effects of 30 M paraquat. 2. While increasing total SOD content, sulfite increased the relative amount of the H2O2-resistant manganese-containing SOD. 3. It appears that O2 may be involved in mediating the toxicity of SO2 in this green alga.Abbreviations SOD superoxide, dismutase - FeSOD ironcontaining superoxide dismutase - MnSOD manganese-containing superoxide dismutase  相似文献   

17.
Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.  相似文献   

18.
Cu,Zn-superoxide dismutase (SOD1) is an abundant, largely cytosolic enzyme that scavenges superoxide anions. The biological role of SOD1 is somewhat controversial because superoxide is thought to arise largely from the mitochondria where a second SOD (manganese SOD) already resides. Using bakers' yeast as a model, we demonstrate that Cu,Zn-SOD1 helps protect mitochondria from oxidative damage, as sod1Delta mutants show elevated protein carbonyls in this organelle. In accordance with this connection to mitochondria, a fraction of active SOD1 localizes within the intermembrane space (IMS) of mitochondria together with its copper chaperone, CCS. Neither CCS nor SOD1 contains typical N-terminal presequences for mitochondrial uptake; however, the mitochondrial accumulation of SOD1 is strongly influenced by CCS. When CCS synthesis is repressed, mitochondrial SOD1 is of low abundance, and conversely IMS SOD1 is very high when CCS is largely mitochondrial. The mitochondrial form of SOD1 is indeed protective against oxidative damage because yeast cells enriched for IMS SOD1 exhibit prolonged survival in the stationary phase, an established marker of mitochondrial oxidative stress. Cu,Zn-SOD1 in the mitochondria appears important for reactive oxygen physiology and may have critical implications for SOD1 mutations linked to the fatal neurodegenerative disorder, amyotrophic lateral sclerosis.  相似文献   

19.
20.
A new, thermostable superoxide dismutase (SOD) from Bacillus licheniformis M20, isolated from Bulgarian mineral springs, was purified 11-fold with 11% recovery of activity. From native PAGE and SDS-PAGE, the enzyme was composed of two subunits of 21.5 kDa each. The SOD was inhibited only by NaN3, which suggested that this SOD is of the manganese superoxide dismutase type. The purified enzyme had maximum activity at pH 8 and 55°C. The half-life of the SOD was 10 min at 95°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号