首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation of bile acids by washed whole cells of strain HD-17, an unidentified gram-positive anaerobic bacterium isolated from human feces, was studied. 7 alpha-Dehydroxylase was produced only during adaptive growth on medium containing 7 alpha-hydroxy bile acids. Both the extent of hydroxylation and the state of conjugation of the bile acids had marked effects on the induction of the enzyme, and the order of the enzyme induction was conjugated cholic acid much greater than cholic acid greater than taurochenodeoxycholic acid greater than or equal to chenodeoxycholic acid. The addition of excess glucose to the growth medium appreciably reduced the enzyme level. The induced enzyme required strict anaerobic conditions for activity and had an optimal pH range of 6.5 to 7.5. In contrast with the induction of the enzyme, the induced enzyme showed a low degree of substrate specificity between cholic acid and chenodeoxycholic acid, with some preference for the former. In addition, the organism contained 3 alpha-, 7 alpha-, and 12 alpha-hydroxysteroid dehydrogenases, and the addition of bile acids to the medium somewhat enhanced the production of the oxidoreductases. The dehydrogenations were obviously stimulated by oxygen as a terminal electron acceptor. The organism also contained bile salt hydrolase.  相似文献   

2.
7 alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by whole cells of strain c-25, a Eubacterium lentum-like intestinal anaerobe, was studied. 7 alpha-Dehydroxylase activity was observed only in whole cells grown in the presence of the primary bile acid (cholic acid or chenodeoxycholic acid). Chenodeoxycholic acid was twice as effective as cholic acid as an inducer. Although cells grown in the presence of chenodeoxycholic acid had no significant substrate specificity for the two primary bile acids, cells grown in the presence of cholic acid showed two times greater activity against cholic acid than chenodeoxycholic acid. Exposure of cell suspensions to atmospheric oxygen resulted in little loss of the 7 alpha-dehydroxylase activity. The induced enzyme had an optimal pH range of 7.3 to 7.7. Although adding flavin mononucleotide to the growth medium significantly increased the 7 alpha-dehydroxylation of bile acids without an increase in cell growth, inhibition of the enzyme activity was observed in the resting cell system when flavin mononucleotide was included in the reaction mixture.  相似文献   

3.
7 alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by whole cells of strain c-25, a Eubacterium lentum-like intestinal anaerobe, was studied. 7 alpha-Dehydroxylase activity was observed only in whole cells grown in the presence of the primary bile acid (cholic acid or chenodeoxycholic acid). Chenodeoxycholic acid was twice as effective as cholic acid as an inducer. Although cells grown in the presence of chenodeoxycholic acid had no significant substrate specificity for the two primary bile acids, cells grown in the presence of cholic acid showed two times greater activity against cholic acid than chenodeoxycholic acid. Exposure of cell suspensions to atmospheric oxygen resulted in little loss of the 7 alpha-dehydroxylase activity. The induced enzyme had an optimal pH range of 7.3 to 7.7. Although adding flavin mononucleotide to the growth medium significantly increased the 7 alpha-dehydroxylation of bile acids without an increase in cell growth, inhibition of the enzyme activity was observed in the resting cell system when flavin mononucleotide was included in the reaction mixture.  相似文献   

4.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

5.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

6.
When grown in the presence of bile acids, two strains of Clostridium limosum were found to contain significant amounts of NADP-dependent 7 alpha/7 beta-hydroxysteroid dehydrogenase and NAD-dependent 7 alpha-hydroxysteroid dehydrogenase which were active against conjugated and unconjugated bile acids. No measurable activity could be found when deoxycholic acid (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid) was used as substrate. No 7 beta-hydroxysteroid dehydrogenase activity and only a trace of 7 alpha-hydroxysteroid dehydrogenase activity could be demonstrated when bile acid was deleted from the growth medium. If bile acid was added after the time of inoculation, the amounts of 7 alpha/7 beta-hydroxysteroid dehydrogenase were greatly reduced. Enzyme enhancement was blocked by addition of rifampicin. The 7 alpha/7 beta-hydroxysteroid dehydrogenase components had pH optima of approximately 10.5. Both the 7 alpha/7 beta-hydroxysteroid dehydrogenase activities were heat-labile, with the 7 beta-component being the more stable of the two. When ranked according to the level of enzymes induced, the order in increasing bile acid induction power on an equimolar scale (0.4 mM) was: 7-ketodeoxycholic acid, cholic acid, chenodeoxycholic acid, and deoxycholic acid. Both 7-ketolithocholic acid and ursodeoxycholic acid were ineffective as enzyme inducers. Optimal induction was achieved with high concentrations of cholic acid (5 mM) and a harvest time of 24 hr. Addition of ursodeoxycholic acid to medium containing optimal concentrations of deoxycholic acid suppressed enzyme induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We tested bile acid oxazoline derivatives of chenodeoxycholic (CDC-OX), 7-ketolithocholic (7-KLC-OX), ursodeoxycholic (UDC-OX), and deoxycholic (DC-OX) as inhibitors of the 7-epimerization of the primary bile acids cholic acid (CA) and CDC in cultures of four species of bacteria and the human fecal flora. The organisms tested elaborate a 7 alpha- and/or 7 beta-hydroxysteroid dehydrogenase (HSDH); they were Escherichia coli (7 alpha-HSDH), Bacteroides fragilis (7 alpha-HSDH), Clostridium absonum (7 alpha- and 7 beta-HSDH) and Eubacterium aerofaciens (7 beta-HSDH). None of the oxazolines affected 7 alpha-OH oxidation of CA or CDC by E. coli or the growth of the organism. All the oxazolines (except UDC-OX) inhibited the growth of B. fragilis and its 7 alpha-HSDH. In contrast, only DC-OX blocked 7 alpha-OH epimerization of CA by C. absonum. Surprisingly, the other three oxazolines enhanced 7 alpha-OH epimerization of CA, but not that of CDC, which was inhibited (CDC-OX greater than 7-KLC-OX much greater than UDC-OX). Enzymic data suggest that CDC-OX in the presence of CA can induce a greater level of both 7 alpha- and 7 beta-HSDH than CA or CDC-OX alone, CDC-OX being more toxic in the presence of CDC. Formation of urso-bile acid from 7-keto substrates by E. aerofaciens is totally blocked by the oxazolines (except UDC-OX). Similarly, suppression of urso-bile acid formation from primary bile acids by the human fecal flora was evident with DC-OX greater than 7-KLC-OX greater than CDC-OX much greater than UDC-OX, the last being ineffective. The inhibitory activity of the oxazolines on the 7-dehydroxylation of primary bile acids by human fecal flora followed the same order.  相似文献   

8.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

9.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

10.
A rat liver epithelial cell line growing in a serum-supplemented medium expressed biosynthetic pathways of bile sterols and of free and conjugated chenodeoxycholic and cholic acids, the main primary bile acids of the liver. They were identified and measured by gas chromatography-mass spectrometry. The bile steroid secretion in the serum-supplemented cell line was established upon incubation in a serum-free medium which was demonstrated to sustain cell growth, allowing elimination of the interference of exogenous bile steroids and effectors. The free bile acid secretion was also expressed in a subline adapted to proliferate in this serum-free medium, i.e., a basal medium supplemented with 4 g/l albumin carrying 7.6 muequiv./l of a mixture of six long-chain free fatty acids but without any addition of hormones and growth factors. In addition, the rat liver epithelial cell line growing in the serum-supplemented medium maintained, with time, a steady-state of bile acid secretion over a lifespan of 500 days. In the two types of liver epithelial cell lines, dexamethasone and chenodeoxycholic acid supplementation exerted, individually, either a stimulating or an inhibiting effect on the bile acid secretion concurrently with the hydroxylation of chenodeoxycholic acid into alpha-muricholic acid.  相似文献   

11.
The isolated livers from normal, streptozotocin-diabetic, and insulin-treated diabetic rats were perfused without and with infused 7 alpha-hydroxycholesterol. Biliary bile acids were extracted and analysed by gas chromatography. In each liver group, total bile acid concentration was more than four times greater with infused 7 alpha-hydroxycholesterol than without the sterol. Without infused 7 alpha-hydroxycholesterol, bile acids in the control group were composed mainly of beta-muricholic acid and to a lesser extent of cholic acid. In the diabetic group, the ratio between these two bile acids reversed. The ratio tended to be normalized by treatment with insulin. With infused 7 alpha-hydroxycholesterol, the control group secreted chenodeoxycholic acid at a considerable higher percentage besides major beta-muricholic acid and minor cholic acid. In the diabetic group, the ratio between the latter two bile acids reversed as was the case with the endogenous secretion, while the percentage of chenodeoxycholic acid remained then unchanged. The diminished percentage of beta-muricholic acid in the diabetic group was increased two times by treatment with insulin.  相似文献   

12.
The gallbladder bile acid composition and the activity of the hepatic steroid 12 alpha-hydroxylase were determined in male and female hamsters. Cholic acid, chenodeoxycholic acid, and deoxycholic acid were the major bile acids in both sexes; in addition, 7-ketodeoxycholic acid and lithocholic acid were present. A sex-linked difference in the ratio of cholic acid (plus its metabolites) to chenodeoxycholic acid (plus its metabolite) was observed. The ratio was 1.93 +/- 0.39 in males and 2.74 +/- 0.54 in females. Another sex-linked difference was found in the activity of the 12 alpha-hydroxylase. The extent of the 12 alpha-hydroxylation of 7 alpha-hydroxycholest-4-en-3-one to yield 7 alpha, 12 alpha-dihydroxycholest-4-en-3-one was about two times greater in the microsomal suspension obtained from the liver of female hamsters than in that of male hamsters. A positive correlation between the 12 alpha-hydroxylase activity and the ratio of cholic acid/chenodeoxycholic acid was also observed. These results strongly support the proposal that the activity of the 12 alpha-hydroxylase is the major factor in determining the relative proportion of cholic acid and chenodeoxycholic acid formed from cholesterol in the liver.  相似文献   

13.
The rate of 7alpha-dehydroxylation of primary bile acids was quantitatively measured radiochromatographically in anaerobically washed whole cell suspensions of Clostridium leptum. The pH optimum for the 7alpha-dehydroxylation of both cholic and chenodeoxycholic acid was 6.5-7.0. Substrate saturation curves were observed for the 7alpha-dehydroxylation of cholic and chenodeoxycholic acid. However, cholic acid whole cell K0.5 (0.37 micron) and V (0.20 mumol hr-1mg protein-1) values differed significantly from chenodeoxycholic acid whole cell K0.5 (0.18 micron) and V (0.50 mumol-1 hr-1 mg protein-1). 7alpha-Dehydroxylation activity was not detected using glycine and taurine-conjugated primary bile acids, ursodeoxycholic acid, cholic acid methyl ester, or hyocholic acid as substrates. Substrate competition experiments showed that cholic acid 7 alpha-dehydroxylation was reduced by increasing concentrations of chendeoxycholic acid; however, chenodeoxycholic acid 7alpha-dehydroxylation activity was unaffected by increasing concentrations of cholic acid. A 10-fold increase in cholic and 7alpha-dehydroxylation activity occurred during the transition from logarithmic to stationary phase growth whether cells were cultured in the presence or absence of sodium cholate. In the same culture, a similar increase in chenodeoxycholic acid 7alpha-dehydroxylation was detected only in cells cultured in the presence of sodium cholate. These results indicate the possible existence of two independent systems for 7alpha-dehydroxylation in C. Leptum.  相似文献   

14.
A gram-positive, rod-shaped anaerobe (isolate F-14) was isolated from soil. This organism was identified by cellular morphology as well as by fermentative and biochemical data as Clostridium limosum. Isolate F-14 formed ursocholic acid (UC) and 7-ketodeoxycholic acid (7-KDC) from cholic acid (CA), and ursodeoxycholic acid (UDC) and 7-ketolithocholic acid (7-KLC) from chenodeoxycholic acid (CDC) in whole cell cultures, but did not transform deoxycholic acid (DC). No hydrolysis or transformation occurred when either taurine- or glycine-conjugated bile acids were incubated with F-14. The type stain of Clostridium limosum (American Type Culture Collection 25620) did not transform bile acids. The structures of ursocholic, ursodeoxycholic, 7-ketodeoxycholic, and 7-ketolithocholic acids were verified by mass spectroscopy and by thin-layer chromatography using Komarowsky's spray reagent. The organism transformed cholic and chenodeoxycholic acids at concentrations of 20 mM and 1 mM, respectively; higher concentrations of bile acids inhibited growth. Optimal yields of ursocholic and ursodeoxycholic acids were obtained at 9-24 hr of incubation and depended upon the substrate used. Increasing yields of 7-ketodeoxycholic and 7-ketolithocholic acids, and decreasing yields of ursocholic and ursodeoxycholic acids were observed with longer periods of incubation. Culture pH changed with time and was characterized by a small initial drop (0.2-0.4 pH units) and a subsequent increase to a pH (8.1-8.2) that was above the starting pH (7.4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

16.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

17.
A gram-positive, rod-shaped anaerobe (strain F-6) was isolated from soil. This organism was identified by cellular morphology as well as fermentative and biochemical data as Clostridium bifermentans. Strain F-6 formed 7-ketolithocholic acid from chenodeoxycholic acid and 7-ketodeoxycholic acid from cholic acid in whole cell cultures, but did not transform deoxycholic acid, ursodeoxycholic acid, or ursocholic acid. This reaction is reversible. The structures of 7-ketolithocholic acid and 7-ketodeoxycholic acid were verified by mass spectroscopy and by thin-layer chromatography using Komarowsky's spray reagent. When incubated with the strain F-6 glycine and taurine conjugates of the primary bile acids were partially hydrolyzed and transformed to 7-keto products. Optimal yields of 7-ketolithocholic acid and 7-ketodeoxycholic acid were obtained after 78 h of incubation. Culture pH changed with time and was characterized by an initial drop (1.1 pH units) and a gradual increase back to the starting pH (7.3). Corroborating these observations, an inducible, NADP-dependent, 7 alpha-hydroxysteroid dehydrogenase was demonstrated in cell extracts of strain F-6. A trace of NAD-dependent 7 alpha-hydroxysteroid dehydrogenase was also found. A substantial increase in the specific activity of the NADP-dependent 7 alpha-hydroxysteroid dehydrogenase was observed when either 7-ketolithocholic acid, chenodeoxycholic acid, or deoxycholic acid was included in the growth medium. Optimal induction of the NADP-dependent 7 alpha-hydroxysteroid dehydrogenase was achieved with 0.3-0.4 mM 7-ketolithocholic acid. Production of the enzyme(s) was optimal at 6-8 h of growth and the 7 alpha-hydroxysteroid dehydrogenases had a pH optimum of approximately 11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The microbial 7alpha-OH epimerisation of cholic, chenodeoxycholic, and 12-ketochenodeoxycholic acids (7alpha-OH bile acids) with Xanthomonas maltophilia CBS 827.97 to corresponding 7beta-OH derivatives with scarcity of oxygen is described. With normal pressure of oxygen the 7-OH oxidation products are obtained. No biotransformations are achieved in anaerobic conditions. The microbial 7alpha-OH epimerisation is achieved by oxidation of 7-OH function and subsequent reduction. Partial purification, in fact, of the enzymatic fraction revealed the presence of two hydroxysteroid dehydrogenases (HSDH) alpha- and beta-stereospecific together with a glycocholate hydrolase. On the basis of these results a further application is the microbial reduction of 6alpha-fluoro and 6beta-fluoro-3alpha-hydroxy-7-oxo-5beta-cholan-24-oic acid methyl esters to the corresponding 7alpha-OH and 7beta-OH derivatives.  相似文献   

19.
The conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-[3H]cholestanoic acid into cholic acid and 3 alpha,7 alpha-dihydroxy-5 beta-[3H]cholestanoic acid into chenodeoxycholic acid has been studied in subcellular fractions of human liver. The products were separated from the substrates by high-pressure liquid chromatography and identified by combined gas chromatography-mass spectrometry. The highest rates of conversion were found in the light mitochondrial fraction. This fraction also contained the highest amount of the marker enzymes for peroxisomes. The maximal rates of cholic acid and chenodeoxycholic acid formation were 1.3 and 1.8 nmol/mg protein per h, respectively. The presence of KCN in the incubation medium stimulated the formation of bile acids. Peroxisomes were prepared from the light mitochondrial fraction by sucrose-gradient centrifugation. By use of different marker enzymes, it was confirmed that the major part of the activity for cholic acid formation in the light mitochondrial fraction was located in the peroxisomes. It is concluded that liver peroxisomes are important for the oxidative cleavage of the C27 steroid side chain in bile acid formation in man.  相似文献   

20.
M Chessebeuf  P Padieu 《In vitro》1984,20(10):780-795
Rat liver epithelial cells explanted in a serum-free medium (SFM) composed of Ham's F10 basal medium plus free fatty acids adsorbed on bovine albumin gave successful rise to primary cultures and then to long-term cell lines that expressed liver functions; induction of L-tyrosine aminotransferase by glucocorticoids, hepatic pattern of progesterone metabolism, and biosynthesis of murine primary bile acids; chenodeoxycholic and cholic acid common to higher vertebrates and alpha-muricholic acid specific of the rat bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号