首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Teter B  Goodman SD  Galas DJ 《Plasmid》2000,43(1):73-84
The binding of many proteins to DNA is profoundly affected by DNA bending, twisting, and supercoiling. When protein binding alters DNA conformation, interaction between inherent and induced DNA conformation can affect protein binding affinity and specificity. Integration host factor (IHF), a sequence-specific, DNA-binding protein of Escherichia coli, strongly bends the DNA upon binding. To assess the influence of inherent DNA bending on IHF binding, we took advantage of the high degree of natural static curvature associated with an IHF site on a 163-bp minicircle and measured the binding affinity of IHF for its recognition site contained on this DNA in both circular and linear form. IHF showed a higher affinity for the circular form of the DNA when compared to the linear form. In addition, the presence of IHF during DNA cyclization changed the topology of cyclization products and their ability to bind IHF, consistent with IHF untwisting DNA. These results show that inherent DNA conformation anisotropy is an important determinant of IHF binding affinity and suggests a mechanism for modulation of IHF activity by local DNA conformation.  相似文献   

3.
Bending of DNA is a prerequisite of site-specific recombination and gene expression in many regulatory systems involving the assembly of specific nucleoprotein complexes. We have investigated how the uniquely clustered Dam methylase sites, GATCs, in the origin of Escherichia coli replication ( oriC  ) and their methylation status modulate the geometry of oriC and its interaction with architectural proteins, such as integration host factor (IHF), factor for inversion stimulation (Fis) and DnaA initiator protein. We note that 3 of the 11 GATC sites at oriC are strategically positioned within the IHF protected region. Methylation of the GATCs enhances IHF binding and alters the IHF-induced bend at oriC . GATC motifs also contribute to intrinsic DNA curvature at oriC and the degree of bending is modulated by methylation. The IHF-induced bend at oriC is further modified by Fis protein and IHF affinity for its binding site may be impaired by protein(s) binding to GATCs within the IHF site. Thus, GATC sites at oriC affect the DNA conformation and GATCs, in conjunction with the protein-induced bends, are critical cis -acting elements in specifying proper juxtapositioning of initiation factors in the early steps of DNA replication.  相似文献   

4.
5.
6.
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.  相似文献   

7.
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can affect the binding of IHF to a particular site. In this study the contribution of various sequence elements to the formation of IHF-DNA complexes was examined. We show that IHF bends DNA more when it binds to a site containing a dA+dT element upstream of its core consensus element than to a site lacking a dA+dT element. We demonstrate that IHF can be specifically crosslinked to DNA with binding sites either containing or lacking this dA+dT element. These results indicate the importance of flanking DNA and a dA+dT element in the binding and bending of a site by IHF.  相似文献   

8.
The specific DNA-binding protein integration host factor (IHF) of Escherichia coli stimulates the site-specific recombination reaction between the attP site of bacteriophage HP1 and the attB site of its host, Haemophilus influenzae, in vitro and also appears to regulate the expression of HP1 integrase. IHF interacts specifically with DNA segments containing the att sites and the integrase regulatory region, as judged by IHF-dependent retardation of relevant DNA fragments during gel electrophoresis. The locations of the protein-binding sites were identified by DNase I protection experiments. Three sites in the HP1 attP region bound IHF, two binding sites were present in the vicinity of the attB region, and one region containing three partially overlapping sites was present in the HP1 integrase regulatory segment. The binding sites defined in these experiments all contained sequences which matched the consensus IHF binding sequences first identified in the lambda attP region. An activity which stimulated the HP1 site-specific integration reaction was found in extracts of H. influenzae, suggesting that an IHF-like protein is present in this organism.  相似文献   

9.
The origin of transfer (oriT) of the IncFV plasmid pED208 contains a region with three binding sites for both the plasmid-encoded TraM protein and the integration host factor (IHF) of Escherichia coli, a sequence-specific DNA-binding protein. One region, containing overlapping TraM and IHF binding sites, could be interpreted as containing two binding sites for each protein. Using gel retardation assays, an affinity constant for IHF binding to the three main sites was estimated in the presence and absence of 0.1 M potassium glutamate, which increased the avidity of IHF binding to the weaker sites by two orders of magnitude. DNase I protection analyses and electron microscopy were used to determine the affinity of IHF for oriT-containing DNA in the presence and absence of TraM. The binding of IHF and TraM was found to be non-cooperative by the two techniques employed. Electron microscopy also demonstrated that IHF bent the oriT region in a manner consistent with its previously determined mode of action, while TraM had no discernible effect on the appearance of the DNA. This suggested that IHF and TraM interact with a 295 by sequence in the oriT region and organize it into a higher order structure that may have a role in the initiation of DNA transfer and control of traM expression.  相似文献   

10.
Examination of the effect of the himA and himD mutants of E. coli on the maintenance of plasmid R6K has revealed that the gamma origin-containing replicons cannot be established in any of the mutants deficient in the production of E. coli Integration Host Factor (IHF). Contrary, the R6K derivatives containing other origins of the plasmid (alpha and/or beta) replicate in a host lacking functional IHF protein. We show that IHF protein binds specifically to a segment of the replication region which is essential for the activity of all three R6K origins. Mapping the IHF binding sequence with neocarzinostatin showed that the protein protects three segments of the origin: two strong binding sites reside within an AT-rich block, while the third, considerably weaker site is separated from the other two by a cluster of the seven 22 bp direct repeats. These seven repeats have been shown previously to bind the R6K-encoded initiator protein pi. We also demonstrate that the establishment of pi-origin complexes prior to IHF addition prevents the binding of the IHF protein to the gamma origin. The binding sequences of IHF and pi proteins do not overlap, therefore, we propose that the binding of pi protein alters the structure of the DNA and thereby prevents the subsequent binding of IHF protein.  相似文献   

11.
The P1 ParB protein is required for active partition and thus stable inheritance of the plasmid prophage. ParB and the Escherichia coli protein integration host factor (IHF) participate in the assembly of a partition complex at the centromere-like site parS. In this report the role of IHF in the formation of the partition complex has been explored. First, ParB protein was purified for these studies, which revealed that ParB forms a dimer in solution. Next, the IHF binding site was mapped to a 29-base pair region within parS, including the sequence TAACTGACTGTTT (which differs from the IHF consensus in two positions). IHF induced a strong bend in the DNA at its binding site. Versions of parS which have lost or damaged the IHF binding site bound ParB with greatly reduced affinity in vitro and in vivo. Measurements of binding constants showed that IHF increased ParB affinity for the wild-type parS site by about 10,000-fold. Finally, DNA supercoiling improved ParB binding in the presence of IHF but not in its absence. These observations led to the proposal that IHF and superhelicity assist ParB by promoting its precise positioning at parS, a spatial arrangement that results in a high affinity of ParB for parS.  相似文献   

12.
13.
Integration of the bacteriophage P2 genome into the Escherichia coli host chromosome occurs by site-specific recombination between the phage attP and E. coli attB sites. The phage-encoded 38-kDa protein, integrase, is known to be necessary for both phage integration as well as excision. In order to begin the molecular characterization of this recombination event, we have cloned the int gene and overproduced and partially purified the Int protein and an N-terminal truncated form of Int. Both the wild-type Int protein and the integration host factor (IHF) of E. coli were required to mediate integrative recombination in vitro between a supercoiled attP plasmid and a linear attB substrate. Footprint experiments revealed one Int-protected region on both of the attP arms, each containing direct repeats of the consensus sequence TGTGGACA. The common core sequences at attP and attB were also protected by Int from nuclease digestion, and these contained a different consensus sequence, AA T/A T/A C/A T/G CCC, arranged as inverted repeats at each core. A single IHF-protected site was located on the P (left) arm, placed between the core- and P arm-binding site for Int. Cooperative binding by Int and IHF to the attP region was demonstrated with band-shift assays and footprinting studies. Our data support the existence of two DNA-binding domains on Int, having unrelated sequence specificities. We propose that P2 Int, IHF, attP, and attB assemble in a higher-order complex, or intasome, prior to site-specific integrative recombination analogous to that formed during lambda integration.  相似文献   

14.
15.
16.
The role of integration host factor In gene expression in Escherichia coli   总被引:28,自引:0,他引:28  
Integration host factor is a sequence-specific, histone-like, multifunctional DNA-binding and -bending protein of Escherichia coli. The characterization and functional analysis of this protein has been done mainly in bacteriophage lambda and other mobile genetic elements. Less is known concerning the role of integration host factor (IHF) in E. coli, although it has been implicated in a number of processes in this organism including DNA replication, site-specific recombination, and gene expression. This review presents recent work which suggests that IHF alters the activity of an unusually large number of operons in E. coli. We discuss the possible physiological relevance of the involvement of IHF in gene expression and the hypothesis that IHF is a member of a class of functionally redundant proteins that participate in chromosome structure and multiple processes involving DNA.  相似文献   

17.
Lambdoid phage 21 requires the Escherichia coli integrative host factor (IHF) for growth. lambda-21 hybrids that have 21 DNA packaging specificity also require IHF. IHF-independent (her) mutants have been isolated. her mutations map in the amino-terminal half of the 21 1 gene. The 1 gene encodes the small subunit of the 21 terminase, and the amino-terminal half of the 1 polypeptide is a functional domain for specifically binding 21 DNA. Hence changes in the DNA-binding domain of terminase, her mutations, render 21 terminase able to function in the absence of IHF. Three of four her mutations studied are trans-dominant. An in vitro system was used to show that packaging of 21 DNA is IHF-dependent. IHF is directly required during the early, terminase-dependent steps of assembly. It is concluded that IHF is a host factor required for function of the 21 terminase. It is proposed, in analogy to the role of IHF in lambda integration, that IHF facilitates proper binding of 21 terminase to phage DNA. Consistent with this proposal, possible IHF-binding sites are present in the 21 cohesive end site.  相似文献   

18.
19.
20.
IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号