首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf dynamics and standing stocks of intertidal seagrasses were studied in the Baie d'Aouatif (Parc National du Banc d'Arguin, Mauritania) in April and September 1988. Standing stocks of Zostera noltii Hornem. suggest a unimodal seasonal curve similar to what is found for populations at higher latitudes. Also, leaf growth rates (0.03 cm2 cm–2 day–1 on average) were similar to those found at higher latitudes in these months. Variation in leaf loss over tidal depth, time and different locations in the Baie d'Aouatif was larger and more often significant than variation in leaf growth. In general, Z. noltii beds in the Baie d'Aouatif had comparable leaf growth rates and standing stocks. In both months losses were almost always higher than or equal to growth.Variation in leaf loss over time was much higher in the plots that were situated high in the intertidal than in lower plots. This is explained by differences in susceptibility to sloughing, which is presumably higher in periods with low tide around noon for shallow depths.In an experiment using artificial shading nets, in situ leaf growth was affected negatively from 94% shading onwards. This shading was observed to reduce the light intensity reaching the seagrass bed to a level below the reported range of light compensation points for Z. noltii. Cymodocea nodosa (Ucria) Ascherson on average had higher leaf area and relative growth rates than Z. noltii and much lower loss rates, resulting in a positive net increase in September. Standing stocks were also higher than for Z. noltii. A mixed seagrass bed containing the above two species and Halodule wrightii Ascherson had the highest observed total biomass: 335 g m–2 ash-free dry weight.  相似文献   

2.
Nitrogen fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Z. noltii and uncolonised sediments of the Bassin d'Arcachon, south-west France, using both slurry and whole core techniques. Measured rates using the slurry technique in Z. noltii colonised sediments were consistently higher than those determined in isolated cores. This was probably due to the release of labile organic carbon sources during preparation of the slurries. Thus, in colonised sediments the whole core technique may provide a more accurate estimate of in situ activity. Acetylene reduction rates measured by the whole core technique in colonised sediments were 1.8 to 4-fold greater, dependent upon the season, in the light compared with those measured in the dark, indicating that organic carbon released by the plant roots during photosynthesis was an important factor regulating nitrogen fixation. In contrast acetylene reduction rates in uncolonised sediments were independent of light.Addition of sodium molybdate, a specific inhibitor of sulphate reduction inhibited acetylene reduction activity in Z. noltii colonised sediments by > 80% as measured by both slurry and whole core techniques irrespective of the light regime, throughout the year inferring that sulphate reducing bacteria (SRB) were the dominant component of the nitrogen fixing microflora. A mutualistic relationship between Z. noltii and nitrogen fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. In uncolonised sediments sodium molybdate initially severely inhibited acetylene reduction rates, but the level of this inhibition declined over the course of the year. These data indicate that the nitrogen fixing SRB associated with the Zostera roots and rhizomes were progressively replaced by an aerobic population of nitrogen fixers associated with the decomposition of this recalcitrant high C:N ratio organic matter.Acetylene and sulphate reduction rates in the seagrass beds showed distinct summer maxima which correlated with a reduced availability of NH 4 + in the sediment and the growth cycle of Z. noltii in the Bassin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by release of organic carbon from the plant roots and maintenance of low ammonium concentrations in the root zone due to efficient ammonium assimilation.Nitrogen fixation rates determined from acetylene reduction rates measured by the whole core technique ranged from 0.1 to 7.3 mg N m–2 d–1 in the Z. noltii beds and between 0.02 and 3.7 mg N m–2 d–1 in uncolonised sediments, dependent upon the season. Nitrogen fixation in the rhizosphere of Z. noltii was calculated to contribute between 0.4 and 1.1 g N m–2 y–1 or between 6.3 and 12% of the annual fixed nitrogen requirement of the plants. Heterotrophic nitrogen fixation therefore represents a substantial local input of fixed nitrogen to the sediments of this shallow coastal lagoon and contributes to the overall productivity of Z. noltii in this ecosystem.  相似文献   

3.
The role of epiphytes in an intertidal Zostera noltii seagrass bed in Marennes-Oléron Bay was assessed in comparison with the other main benthic primary producers (Z. noltii, microphytobenthos) at two bathymetric levels and on a seasonal basis. Assemblage and biomass of epiphytes were studied using scanning electron microscopy (SEM). Z. noltii and its detrital matter followed a typical seasonal pattern: microphytobenthos was present in large quantities throughout the year representing 21% of the total biomass while detrital matter, above-ground parts and below-ground parts accounted for 65, 9 and 5%, respectively. Only two species of epiphytic diatoms, Cocconeis scutellum and Cocconeis placentula, were observed on seagrass leaves. Epiphyte biomass was very low, representing on average less than 0.001% of that of microphytobenthos or leaves. This low epiphyte biomass is linked with the absence of macroalgae and also with the low biovolume of Cocconeis, which formed a monolayer of cells on leaves. This can be explained by the severe conditions of the intertidal and the high leaf turn-over of Z. noltii leaves.  相似文献   

4.
The density, biomass and shoot morphology of two populations of Zostera noltii were monitored from January 1998 to July 1999 at two shallow Mediterranean lagoons of Biguglia and Urbino, which differ in hydro-morphological conditions and nutrient loading. Monitoring included the principal biological and foliar parameters (shoot density, aboveground and belowground biomass, length, width and number of leaves, LAI and coefficient A: percentage of leaves having lost their apex), the organic matter contents of the sediment and the environmental conditions (salinity, turbidity, temperature, nutrient concentrations and dissolved oxygen levels). The two populations of Z. noltii displayed seasonal changes in density (1600–19600 m2), aboveground biomass (11–153 g. DW. m−2), leaf length (33–255 mm), and leaf width (0.9–1.8 mm). Temperature and turbidity were significant environmental factors influencing the temporal changes observed in the Z. noltii meadows studied. Conversely, the belowground biomass, the number of leaves per shoot and the LAI did not undergo any seasonal changes. In the Biguglia lagoon, the functioning dynamics of the Z. noltii seagrass beds are determined by the catchment area and the inputs of nutrients derived from it, whereas in the Urbino lagoon the dynamics of the Z. noltiibeds depend on low levels of water turbidity.  相似文献   

5.
The changes in spatial distribution of intertidal Zostera noltii seagrass beds were studied with multispectral visible-infrared remote sensing in Bourgneuf Bay (France) over a 14-year period, between 1991 and 2005. Six SPOT satellite images acquired at low tide were calibrated using in situ spectroradiometric data and processed with the Normalized Difference Vegetation Index (NDVI). A steady and linear increase in meadow areas was observed between 1991 and 2005 with total surfaces colonized by Z. noltii increasing from 208 to 586 ha, respectively. A greater increase in the densest part of the meadow (NDVI > 0.4) was also observed: it represented only 15% of total meadow surfaces in 1991 vs. 35% in 2005. The seagrass expansion took place mainly towards the lower part of the intertidal zone, while in the upper intertidal zone the meadow appeared strictly limited by the +4 m (Lowest Astronomical Tide) bathymetric level. The influence of Z. noltii above-ground biomass variations on spectral reflectance was analyzed experimentally by spectrometry. Z. noltii displays a characteristic steep slope from 700 to 900 nm, increasing with increasing biomass. A quantitative relationship obtained experimentally between NDVI and the dry weight of leaves was used to produce a biomass distribution map. The distribution of Bourgneuf Bay intertidal seagrass beds is certainly constrained by the water turbidity and we suggest that tidal flat accretion could be a significant variable explaining the observed expansion downwards. With very limited spatial interactions, oyster aquaculture cannot be considered as a threat, while a recent increase in recreational hand fishing of Manila clams within the beds could become problematic.  相似文献   

6.
Material exchange, biodiversity and trophic transfer within the food web were investigated in two different types of intertidal seagrass beds: a sheltered, dense Zostera marina bed and a more exposed, sparse Z. noltii bed, in the Northern Wadden Sea. Both types of Zostera beds show a seasonal development of above-ground biomass, and therefore measurements were carried out during the vegetation period in summer. The exchange of particles and nutrients between seagrass beds and the overlying water was measured directly using an in situ flume. Particle sedimentation [carbon (C), nitrogen (N) and phosphorus (P) constituents] from the water column prevailed in dense seagrass beds. In the sheltered, dense seagrass bed, a net particle uptake was found even on windy days (7–8 Beaufort). Dissolved inorganic N and orthophosphate were mainly taken up by the dense seagrass bed. At times of strong winds, nutrients were released from the benthic community to tidal waters. In a budget calculation of total N and total P, the dense seagrass beds were characterised as a material sink. The seagrass beds with sparse Z. noltii were a source of particles even during calm weather. The uptake of dissolved inorganic N in the sparse seagrass bed was low but significant, while the uptake of inorganic phosphate and silicate by seagrasses and their epiphytes was exceeded by release processes from the sediment into the overlying water. Estimates at the ecosystem level showed that material fluxes of seagrass beds in the Sylt-Rømø Bight are dominated by the dense type of Zostera beds. Therefore, seagrass beds act as a sink for particles and for dissolved inorganic nutrients. During storms, seagrass beds are distinct sources for inorganic nutrients. The total intertidal area of the Sylt-Rømø Bight could be described as a sink for particles and a source for dissolved nutrients. This balance of the material budget was estimated by either including or excluding seagrass beds. Including the subtidal part, the function of the ecosystem as a source for particles increased, supposing that all seagrass beds were lost from the area. During the vegetation period, seagrass beds act as a storage compartment for material accumulated in the living biomass of the community. There was great biodiversity among the plant and animal groups found in intertidal seagrass beds of the Sylt-Rømø Bay, representing 50–86% of the total number of species investigated, depending on the particular group. Since most species are not exclusively seagrass residents, the loss of intertidal seagrass beds would be of minor importance for biodiversity at the ecosystem level. Food web structure in seagrass beds is different from other intertidal communities. Primary production and detritus input is high, but secondary production is similar to that of unvegetated areas, although the relative importance of the trophic guilds is different. The loss of seagrass beds leads to profound alterations in the food web of the total ecosystem. Historical as well as recent changes in material fluxes and energy flow due to man-made alterations to the ecosystem are discussed.  相似文献   

7.
The dwarf seagrass Zostera noltii is an important primary producer in Atlantic coastal ecosystems from Mauritania to southern Norway and the Mediterranean Sea. Sessile intertidal organisms existing at the interface between marine and terrestrial environments may be particularly vulnerable to environmental change. In this study, we asked how near to thermal tolerance limits natural populations of Z. noltii are in the Ria Formosa coastal lagoon system in southern Portugal. We recorded the maximum temperatures in the Ria Formosa during the 2007 summer, and conducted experiments to determine the sub-lethal temperature of Z. noltii shoots sampled at two sites located at different tidal heights. Mortality rates and photosynthetic performance were recorded within a range of heat shock temperatures between 35 and 41°C. Survival was recorded ≤37°C, while higher temperatures led to a sudden drop in photosynthetic capacity followed by mortality (shoot loss) that occurred more rapidly with increasing temperatures. At 39°C and above, the rate of shoot mortality in both sites was close to 100%, occurring between 5 and 13 days after the heat shock. Survival was ca. 95 and 90% at 35 and 37°C, respectively. From these results for Z. noltii populations in the Ria Formosa we estimated sub-lethal temperature to be approximately 38°C for Z. noltii, close to the maximum of 36°C recorded in the summer 2007. Considering predicted trajectories in the coming decades, these results raise concern as to the future viability of intertidal Z. noltii populations near the southernmost edge of their distribution. Handling editor: S. M. Thomaz  相似文献   

8.
The Mondego estuary (Portugal) has suffered severe ecological stress over the last two decades, as manifested in the replacement of seagrasses by opportunistic macroalgae, degradation of water quality and increased turbidity. A restoration plan was implemented in 1998, which aimed to reverse the eutrophication effects, and especially to restore the original natural seagrass (Zostera noltii) community. This article explores the long-term changes in Ampithoe valida and Melita palmata (Amphipoda) populations in response to eutrophication (with consequent seagrass loss and macroalgal proliferation) and to the subsequent restoration plan (with progressive seagrass recovery and macroalgal biomass decline). Until the early 1990s, high densities of A. valida and M. palmata were recorded in the Mondego estuary, especially during the occurrence of the macroalgal bloom and during all the periods in which green macroalgae were available. After the implementation of the restoration plan, species abundance, biomass and production levels decreased considerably due to the progressive decline of green macroalgae. This implied the virtual disappearance of the amphipod population, mainly A. valida. Distinct behaviours displayed by the two species could be related to different food strategies and habitat preferences. Ampithoe valida showed feeding preferences for ephemeral softer, filamentous or bladed algae (e.g. Ulva sp.) due to its high caloric content, using the Z. noltii bed only as a habitat for protection against predators or shelter from wave action. On the other hand, M. palmata did not suffer a strong decline in its population density, biomass and production, which may indicate that this species is probably not a primary consumer of green macroalgae and may readily shift to alternative ecological niches. Handling editor: P. Viaroli  相似文献   

9.
In situ nitrogen fixation associated with the seagrass Halophila stipulacea, at the northern Gulf of Elat (Red Sea), is eight to ten times higher than that of nearby plant-free areas. A daily cycle of nitrogen fixation is evident, with rates during the day being seven times greater than during the night. Removal of seagrass leaves only from a patch within a seagrass bed gradually decreases nitrogen fixation activity, reaching the rates of plant-free areas after ten hours. A method devised for the in situ measurement of nitrogen fixation rates using belljars is described in detail. Nitrogen fixation rates in situ are higher than in the laboratory and lack the lag period typical to laboratory measurements. In laboratory experiments using intact plant samples, glucose enhances nitrogen fixation rates both in light and dark. Photosystem II inhibitor (3-3,4-dichloro-phenyl-1,1-dimethylurea) doubles nitrogen fixation rates in light. Both field and laboratory results indicate that light is essential for nitrogen fixation activity in the H. stipulacea bed possibly through its effect on cyanobacterial population that occupy the aerobic niches of the phyllosphere and on photosynthetic Rhodospirillacean bacteria that inhabit the anaerobic ones. Nitrogen fixation rates evident in H. stipulacea beds in situ account for a considerable portion of the biomass production by the seagrasses. The dependence of high nitrogenase activity by the diazotrophs on the presence of the seagrasses indicates the great importance of the seagrass community to the nitrogen cycle in its highly oligotrophic surroundings of the Gulf of Elat.  相似文献   

10.
In the present study, we compared the clonal architecture between two seagrass species, the dioecious Cymodocea nodosa and the hermaphroditic, self-compatible Zostera noltii, in order to verify the hypothesis that clonal growth strategies and resulting genet architecture are associated with mating system in clonal plants. It is expected that self-incompatible species should be associated to a guerrilla growth form, because of pollen limitation due to obligate outbreeding, while the ecologically advantageous phalanx strategy can be adopted in self-compatible species. Genotypic diversity and heterozygosity were also assessed in the two species. Sampling has been conducted in mixed stands, collecting shoots of the two species at the same points of the sampling grid, in order to even out any effects of environmental heterogeneity. Species-specific microsatellite loci have been used as molecular markers to identify clones and assess their spatial distribution in both species. As expected, we found an intermingled configuration of genets in the dioecious C. nodosa while Z. noltii was characterized by a clumped, `phalanx-type' distribution of clones. C. nodosa was characterized by higher genotypic diversity with regard to Z. noltii, while heterozygosity levels were comparable in the two species. Coordinating Editor: Dr J. Tuomi  相似文献   

11.
Prins  T. C.  Smaal  A. C. 《Hydrobiologia》1994,282(1):413-429
The fluxes of particulate and dissolved material between bivalve beds and the water column in the Oosterschelde estuary have been measured in situ with a Benthic Ecosystem Tunnel. On mussel beds uptake of POC, PON and POP was observed. POC and PON fluxes showed a significant positive correlation, and the average C:N ratio of the fluxes was 9.4. There was a high release of phosphate, nitrate, ammonium and silicate from the mussel bed into the water column. The effluxes of dissolved inorganic nitrogen and phosphate showed a significant correlation, with an average N:P ratio of 16.5. A comparison of the in situ measurements with individual nutrient excretion rates showed that excretion by the mussels contributed 31–85% to the total phosphate flux from the mussel bed. Ammonium excretion by the mussels accounted for 17–94% of the ammonium flux from the mussel bed. The mussels did not excrete silicate or nitrate. Mineralization of biodeposition on the mussel bed was probably the main source of the regenerated nutrients.From the in situ observations net budgets of N, P and Si for the mussel bed were calculated. A comparison between the uptake of particulate organic N and the release of dissolved inorganic N (ammonium + nitrate) showed that little N is retained by the mussel bed, and suggested that denitrification is a minor process in the mussel bed sediment. On average, only 2/3 of the particulate organic P, taken up by the mussel bed, was recycled as phosphate. A net Si uptake was observed during phytoplankton blooms, and a net release dominated during autumn. It is concluded that mussel beds increase the mineralization rate of phytoplankton and affect nutrient ratios in the water column. A comparison of N regeneration by mussels in the central part of the Oosterschelde estuary with model estimates of total N remineralization showed that mussels play a major role in the recycling of nitrogen.  相似文献   

12.
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

13.
In the central highlands of Mexico, mesquite (Prosopis spp) and huisache (Acacia tortuoso), N2 fixing trees or shrubs, dominate the vegetation and are used in an alley cropping system to prevent erosion and restore soil fertility. We investigated how much the leaves of both trees contribute to dynamics of carbon (C) and nitrogen (N) in soil by adding leaves of both species to soil sampled under the canopy of mesquite and huisache, outside their canopy and from fields cultivated with maize at three different sites and monitoring microbial biomass C, production of carbon dioxide (CO2), and dynamics of inorganic N (ammonium and nitrate) in an aerobic incubation. The soluble fraction and N content of the mesquite leaves were larger than in the huisache leaves, but lignin and polyphenol content were lower. Evolution of CO2 increased 2.7-times when mesquite and 2.4-times when huisache leaves were added to soil. During all stages of decomposition and in all treatments, C mineralization of leaves from mesquite was greater than from huisache leaves. Mesquite leaves induced an increase in mineral N of 25.6 mg N kg–1 soil after 56 days and those of huisache 9.8 mg N kg–1. Twenty-six percent of N from mesquite leaves and 11% of huisache was mineralized, if no priming effect was considered. Nitrogen release from the leaves was greater when the soil organic matter content was lower. It was found that soil under the canopy of mesquite and huisache effectively accumulated organic material, micro-organisms and valuable nutrients. In an alley cropping system huisache might be a better choice than mesquite as huisache grows faster than mesquite and sheds its leaves twice a year while mesquite only once, although the amount of N mineralized was larger from mesquite leaves than from those of huisache.  相似文献   

14.
When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass.  相似文献   

15.
Ria Formosa lagoon in southern Portugal has an important population of seagrasses that includes Zostera noltii in the intertidal area. The area is classified as a Natural Park and supports a major economic activity – clam farming. This activity has a direct influence on Z. noltii populations by removal of seagrass beds and altering habitat. Geographic Information Systems and spatial analysis were used to produce the first distribution map of Z. noltii in the Ria Formosa and to analyse interactions between clam farming and the level of seagrass protection according to the Natural Park of Ria Formosa. Stakeholder analyses, using interviews, questionnaires and participant observation, were conducted to gain a better understanding of clam farming's influence on seagrass populations. Seagrass covers 45% of the intertidal area while clam farming covers 14%. An additional 75% of the total area of Z. noltii can be potentially converted into clam cultures. The current management of clam farming is largely ineffective, representing a significant obstacle to seagrass conservation.  相似文献   

16.
Jensen  Susan  Bell  Susan 《Plant Ecology》2001,155(2):201-217
By examining the spatial distribution of rhizome morphological characteristics of the seagrass Halodule wrightii, in relation to a seasonal pattern of seagrass patch dynamics, we attempted to derive a mechanistic explanation for the variety of changes exhibited by seagrass patch shapes. Rhizome morphological characteristics (mean internodal distance, branching frequency and biomass) were measured at three spatially-recognized regions (Flood edge, Center, Ebb edge) of 5 seagrass patches, reflecting position relative to hydrodynamic flow. In addition, maps (1 resolution) of the seagrass patches were used to quantify changes in seagrass patch margins across the growing season. Rhizome morphological characteristics varied with spatial position: longer internodal distances were recorded on both edges of the patch relative to patch center, and rhizomes from Flood edges exhibited longer internodes than plants on the Ebb edge of patches. Branching frequency showed no spatially-explicit distribution across the seagrass patches. Patch change analysis indicated a pattern of increase in patch area on the Flood edges of seagrass patches and recession (or no change) on the Ebb edges. Patch margin change was significantly correlated with internodal distances: the more positive the increase in patch seagrass coverage on an edge, the greater the internodal distances.Sediment nutrients were explored as a potential mechanism for the distinct spatial distribution of morphologies found; experimental addition of phosphorus, but not nitrogen, significantly altered the rhizome morphology and biomass, but measurement of ambient sediment nutrient concentrations produced no significant correlations with the in situ distribution of rhizome morphologies. These results suggest that larger-scale landscape characteristics of patch dynamics may be determined by predictable behaviors of small-scale components, but the results do not conclusively describe a mechanism for this system.  相似文献   

17.
The chromosome numbers of the five European seagrasses have been determined in material from several sites along the coasts of the Atlantic Ocean, the North Sea and the Mediterranean:Zostera marina L., 2n = 12;Z. noltii Hornem., 2n = 12;Posidonia oceanica (L.)Delile, 2n = 20;Cymodocea nodosa (Ucria)Aschers., 2n = 14, 2n = 28;Halophila stipulacea (Forsk.)Aschers., 2n = 18. The difference in chromosome morphology betweenZ. marina andZ. noltii supports the division of the genus into two subgenera.  相似文献   

18.
揭示竹林与其林下植被细根单独和混合分解特征,探讨竹林细根与其林下植被细根之间相互影响的潜在机制,为毛竹林林下植被的合理经营管理提供理论参考。采用原位分解袋法研究了四川长宁毛竹(Phyllostachys edulis)与林下植被芒箕(Dicranopteris pedata)细根分解和养分释放过程,试验周期为1年。结果表明(1)毛竹和芒箕细根初始化学组分有着明显差异,碳(C)含量、碳氮比(C/N)和碳磷比(C/P)毛竹显著高于芒箕(P0.05),而氮(N)含量、磷(P)含量和氮磷比(N/P)均芒箕高于毛竹(P0.05)。(2)毛竹和芒箕细根分解系数(k)分别为0.66±0.04和0.42±0.41,毛竹细根分解速率显著高于芒箕;土壤温度与分解速率呈显著正相关,是影响细根分解速率的关键环境因子。(3)毛竹和芒箕细根碳(C)、氮(N)、磷(P)养分释放均表现为净释放,毛竹细根碳(C)释放速率高于芒箕,但细根氮(N)和磷(P)释放率均低于芒箕。(4)混合分解的实测值和期望值对比结果表明毛竹和芒箕细根混合对分解速率和磷(P)元素的释放没有显著影响,但显著促进了碳(C)元素的释放,抑制了分解初期氮(N)元素的释放。毛竹与林下植被芒箕单独细根分解和养分释放特征均表现不同;细根混合分解速率无显著混合效应,但养分释放的混合效应表现出不同阶段性和不同方向(正或负),说明林下植被通过影响细根养分释放而影响竹林生态系统的养分循环。  相似文献   

19.
Lack of synchronization between N released from prunings applied to the soil as green manures and crop uptake as well as optimization of protein digestibility for ruminants, remain major research objectives for the selection of multipurpose tree and shrub legumes (MPT) for mixed smallholder systems in the tropics. Prunings of the high tannin, low quality MPT Calliandra houstoniana CIAT 20400 (Calliandra) and the tannin free, high quality MPT Indigofera zollingeriana (Indigofera) were mixed in the proportions 100:0, 75:25, 50:50, 25:75, and 0:100 (w/w) in order to measure the aerobic rate and extent of N release in a leaching tube experiment, and the anaerobic extent of N degradation in an in vitro gas production experiment. Parameters measured in Calliandra:Indigofera mixtures were compared to theoretical values derived from single species plant material (i.e. 100:0 and 0:100). Aerobic N release and apparent anaerobic N degradation increased with increasing proportion of the high quality legume (Indigofera) in the mixture. While N release in the soil was lower than theoretical values in the mixture 50% Calliandra/50% Indigofera, this was not the case with apparent anaerobic N degradation with the same mixture. Aerobic N immobilization was more pronounced for the mixture 75% Calliandra/25% Indigofera than for 100% Calliandra and negative interaction was observed with apparent anaerobic N degradation in the mixture 75% Calliandra/25% Indigofera. Plant quality parameters that best correlated with aerobic N release and apparent anaerobic N degradation in the rumen were lignin + bound condensed tannins (r=−0.95 and −0.95 respectively, P<0.001). In addition, a positive correlation (r=0.89, P<0.001) was found between aerobic N release in the leaching tube experiment and apparent N degradation in the in vitro anaerobic gas production experiment. Results show that mixing prunings of MPT materials with contrasting quality is an effective way to modify aerobic N release pattern as well as apparent anaerobic N degradation and could possibly be applied to minimize N losses in the rumen and in the soil. In addition, apparent anaerobic N degradation was identified as good predictor of aerobic N release in the soil, which has resource saving implications when screening MTP to be used as green manures.  相似文献   

20.
Light reduction in the water column and enhanced organic matter (OM) load into the sediments are two main consequences of eutrophication in marine coastal areas. This study addresses the combined effects of light, OM, and clonal traits in the seagrass Zostera noltii. Large Z. noltii plants were grown in sand with or without the addition of OM and under two light levels (high light and low light). Whereas some complete plant replicates were grown under homogeneous light and/or OM conditions, other replicates were grown under contrasting light and/or OM levels between the apical and the distal parts of the same plant. The three-way factorial design (light, OM load, and apex position) allowed us to determine the harmful effect of light reduction and OM enrichment on the growth, photosynthetic performance, and biochemical composition of Z. noltii. The addition of OM to the sediment promoted a decrease, or even an inhibition, in net plant growth regardless of the light level when the whole plants were grown under homogeneous light conditions. However, the results differed when plants were grown under contrasting light and/or OM conditions between apical and distal parts. In this case, the harmful effect of OM load was alleviated when apical parts were grown under high light conditions. OM loads also negatively affected the photosynthetic performance, evaluated as leaf fluorescence. The results indicate the importance of clonal traits in the response of Z. noltii growth to light conditions and OM enrichment. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号