首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi(3+) binds strongly to metallothionein with a stoichiometry bismuth:MT = 7:1 (Bi(7)MT) and can readily displace Zn(2+) and Cd(2+). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)](-), and both exhibit biphasic kinetics. (1)H NMR data show that Zn(2+) is displaced faster than Cd(2+), and that both Zn(2+) and Cd(2+) in the beta-domain (three metal cluster) of MT are displaced by Bi(3+) much faster than from the alpha-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi(7)MT is very similar to that for the glutathione and N-acetyl-L-cysteine complexes [Bi(GS)(3)] and [Bi(NAC)(3)] with an inner coordination sphere of three sulfur atoms and average Bi-S distances of 2.55 A. Some sites appear to contain additional short Bi-O bonds of 2.2 A and longer Bi-S bonds of 3.1 A. The Bi(3+) sites in Bi(7)MT are therefore highly distorted in comparison with those of Zn(2+) and Cd(2+).  相似文献   

2.
Novel bismuth(III) complexes 1-4 with the tridentate thiosemicarbazone ligand of 2N1S donor atoms [Hmtsc (L1); 2-acetylpyridine (4N-morpholyl thiosemicarbazone)], the pentadentate double-armed thiosemicarbazone ligand of 3N2S donor atoms [H2dmtsc (L3); 2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone)] and the pentadentate double-armed semicarbazone ligand of 3N2O donor atoms [H2dasc (L4b); 2,6-diacetylpyridine bis(semicarbazone)], were prepared by reactions of bismuth(III) nitrate or bismuth(III) chloride and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR and NMR (1H and 13C) spectroscopy. The crystal and molecular structures of complexes 1, 2a, 2b and 4b, and the "free" ligand L1 were determined by single-crystal X-ray structure analysis. The dimeric 7-coordinate bismuth(III) complex [Bi(dmtsc)(NO3)]2, 1, and the monomeric 7-coordinate complexes [Bi(Hdasc)(H2O)](NO3)2.H2O (major product), 2a, and [Bi(dasc)(H2O)]NO3.H2O (minor product), 2b, all with pentagonal bipyramidal bismuth(III) centers, are depicted with one electron pair (6s2) of the bismuth(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and monodentate NO3 or H2O ligands, respectively. These complexes are related to the positional isomers of one electron pair of the bismuth(III) atom; 1 has an electron pair positioned in the pentagonal plane (basal position), while 2a and 2b have an electron pair in the apical position. The monomeric 8-coordinate complex [Bi(mtsc)2(NO3)], 4b, which was obtained by slow evaporation in MeOH of the 1.5 hydrates 4a, was depicted with one electron pair of the bismuth(III) atom, two deprotonated mtsc- ligand and one nitrate ion. On the other hand, crystals of the complex "[Bi(mtsc)Cl2]", 3, prepared by a reaction of BiCl3 with L1 showed several polymorphs (3a, 3b, 3c and 3d) due to coordination and/or solvation of dimethyl sulfoxide (DMSO) used in the crystallization. Bismuth(III) complexes 1 and 4a showed selective and effective antibacterial activities against Gram-positive bacteria. The structure-activity relationship was discussed.  相似文献   

3.
4.
Bismuth compounds are widely used for the treatment of peptic ulcers and Helicobacter pylori infections. It has been suggested that enzyme inhibition plays an important role in the antibacterial activity of bismuth towards this bacterium. Urease, an enzyme that converts urea into ammonia and carbonic acid, is crucial for colonization of the acidic environment of the stomach by H. pylori. Here, we show that three bismuth complexes exhibit distinct mechanisms of urease inhibition, with some differences dependent on the source of the enzyme. Bi(EDTA) and Bi(Cys)3 are competitive inhibitors of jack bean urease with K i values of 1.74 ± 0.14 and 1.84 ± 0.15 mM, while the anti-ulcer drug, ranitidine bismuth citrate (RBC) is a non-competitive inhibitor with a K i value of 1.17 ± 0.09 mM. A 13C NMR study showed that Bi(Cys)3 reacts with jack bean urease during a 30 min incubation, releasing free cysteines from the metal complex. Upon incubation with Bi(EDTA) and RBC, the number of accessible cysteine residues in the homohexameric plant enzyme decreased by 5.80 ± 0.17 and 11.94 ± 0.13, respectively, after 3 h of reaction with dithiobis(2-nitrobenzoic acid). Kinetic analysis showed that Bi(EDTA) is both a competitive inhibitor and a time-dependent inactivator of the recombinant Klebsiella aerogenes urease. The active C319A mutant of the bacterial enzyme displays a significantly reduced sensitivity toward inactivation by Bi(EDTA) compared with the wild-type enzyme, consistent with binding of Bi3+ to the active site cysteine (Cys319) as the mechanism of enzyme inactivation.  相似文献   

5.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/Bi? O interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm?2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm?2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/Bi? O surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.  相似文献   

6.
The widespread use of bismuth compounds (e.g., bismuth subsalicylate, colloidal bismuth subcitrate) in medicine for over 200 years is founded on empirical observations, and definitive chemical mechanisms associated with the bioactivity of these compounds are not understood. The thiophilic nature of bismuth is a strong indication that sulfur-containing biological molecules are likely preliminary targets for bismuth. Using electrospray ionization mass spectrometry (ESI-MS), we have discovered a dramatic cooperative influence of thiolate ligands on the formation of bismuth complexes containing other biologically significant non-thiolate moieties. Reactions of Bi(NO3)3 with L-cysteine, 3-mercaptopropionic acid or 2-mercaptoethylamine, together with citric acid provide the first evidence of bismuth-citrate complexes in the gas phase. Analogously, reactions of Bi(NO3)3 with L-cysteine, together with other amino acids, reveal a wide range of new biologically relevant complex ions of bismuth that provide insight into the bioactivity of bismuth.  相似文献   

7.
Electrospray ionization mass spectrometry (ESI-MS) of mixtures containing glutathione (GSH) and nitrates, oxides or chlorides of the heavy metals, arsenic, antimony, cadmium, mercury, thallium, lead or bismuth allows for definitive identification of complexes in the gas phase. In the positive ion mode, spectra show prominent m/z peaks that are assigned to monocations of general formulae [E(GSH)-xH]+ (E = Cd, Hg, Tl, Pb, As, Sb or Bi; x = 0, 1 or 2), [E(GSH)2-xH]+ (E = Hg, As, Sb, or Bi; x = 1 or 2), [E(GSH)3-xH]+ (E = As, Sb or Bi; x = 2), [E2(GSH)-xH]+ (E = Tl or Pb; x = 1 or 3), [E2(GSH)2-xH]+ (E = Bi; x = 5), [E2(GSH)3-xH]+ (E = Bi; x = 5), and/or [E3(GSH)-xH]+ (E = Tl; x = 2). Spectra obtained in the negative ion mode give m/z peaks observed in assigned to monoanionic species that correspond to some of the monocationic species listed above with two protons removed. The results demonstrate the potential application of ESI-MS as a versatile and efficient approach to study toxic heavy metals in biological systems. In addition, the observations provide a foundation database to understand the chemistry of these heavy metals with bio-molecules.  相似文献   

8.
The whole-body clearance, organ distribution, and subcellular distribution of no-carrier-added and carried-added intraperitoneally administered bismuth radiotracers (205Bi-206Bi) has been determined in Sprague-Dawley rats. Differences in clearance rate kinetics were observed for this study with the administration of neutral solutions of tracers in a carbonate buffer compared to other studies with other chemical forms. The final organ distribution was not strongly dependent on administered chemical form. We provide definitive evidence that bismuth does indeed enter subcellular organelles such as the nucleus and the mitochondria, which had 30-50% and 10-25%, respectively, of activity in kidney tissue. The kidneys were the main sink for radiotracer with uptake ranging from 20 to 50% of total body activity. The calculated energy deposition by recoil nuclei after alpha emission of potentially therapeutically useful 212Bi was found to equal or exceed the alpha energy deposition per organelle if the source is inside the cell nucleus or mitochondria.  相似文献   

9.
Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi(20)(C(5V)), Bi(24)(C(6v)), Bi(28)(C(1)), B(32)(D(3H)), Bi(60)(C(I))} and calculated their conductor properties.  相似文献   

10.
Oxide-based materials containing molybdenum and bismuth exhibit unique chemical and physical properties; for instance, bismuthmolybdate phases represent efficient heterogeneous catalysts. This review therefore summarises the literature available concerning compounds containing Mo-Bi metal bonds on the one hand and complexes with bridging O-donor ligands (alkoxide or oxide) between Mo and Bi metal centres on the other hand. The structures adopted in the solid crystalline state are often determined by secondary interactions, which are discussed for certain series of compounds. Moreover, the reactivities observed are compared.  相似文献   

11.
Several bismuth compounds are currently used as antiulcer drugs, but their mechanism of action is not well established. Proteins are thought to be target sites. In this work we establish that the competitive binding of Bi(3+) to the blood serum proteins albumin and transferrin, as isolated proteins and in blood plasma, can be monitored via observation of (1)H and (13)C NMR resonances of isotopically labeled [epsilon-(13)C]Met transferrin. We show that Met(132) in the I132M recombinant N-lobe transferrin mutant is a sensitive indicator of N-lobe metal binding. Bi(3+) binds to the specific Fe(3+) sites of transferrin and the observed shifts of Met resonances suggest that Bi(3+) induces similar conformational changes in the N-lobe of transferrin in aqueous solution and plasma. Bi(3+) binding to albumin is nonspecific and Cys(34) is not a major binding site, which is surprising because Bi(3+) has a high affinity for thiolate sulfur. This illustrates that the potential target sites for metals (in this case Bi(3+)) in proteins depend not only on their presence but also on their accessibility. Bi(3+) binds to transferrin in preference to albumin both in aqueous solution and in blood plasma.  相似文献   

12.
Guo H  Ye C  He H  Chen Z  Hu J  Hu G  Li A 《Biosensors & bioelectronics》2012,33(1):204-210
Neodymium (Nd) substituted bismuth titanate (Bi(4-x)Nd(x)Ti(3)O(12), BNTO-x) nanoplates inlaid one another were prepared by sol-gel hydrothermal method, which was explored for protein immobilization and biosensor fabrication. Comparative experiments witnessed that Bi(3+) ions in bismuth titanate (Bi(4)Ti(3)O(12), BTO) were successfully substituted with Nd(3+) ions, and the electrochemical properties of the Hb-Chi-BNTO biosensors closely depended on the Nd(3+) ion content. With increasing the Nd(3+) doping content, the electrochemical performance of the Hb-Chi-BNTO-x biosensors showed regularly variable. Moreover, compared with the Hb-Chi-BTO and other Hb-Chi-BNTO-x biosensors, the Hb-Chi-BNTO-0.85 biosensor had more excellent electrochemical and electrocatalytic properties such as stronger redox peak currents (approximately three-fold), smaller peak-to-peak separation (50 mV), larger heterogeneous electron transfer rate (14.1 ± 3.8s(-1)), higher surface concentration of electroactive redox protein (about 8.16 × 10(-11)mol/cm(2)), and better reproducibility and stability. The Nd-depended electrochemical properties of the Hb-Chi-BNTO biosensors may open up a new idea for designing third-generation electrochemical biosensors, and the BNTO-0.85-based biosensor is also expected to find potential applications in many areas such as biomedical, food, and environmental detection.  相似文献   

13.
14.
A combined system of bismuth triflate [Bi(OTf)(3)] and boron trifluoride etherate (BF(3).OEt(2)) in dichloromethane is an efficient promoter for the glycosylation of N-acetylneuraminic acid derivatives. The co-existence of two acid catalysts such as Bi(OTf)(3)-BF(3).OEt(2) or Bi(OTf)(3)-PPA is confirmed to be essential for obtaining high yields of glycosylation products with p-nitrobenzyl alcohol, which also turned to be superior to those reported previously.  相似文献   

15.
As shown by recent studies, anaerobic members of Archaea and Bacteria are involved in processes that transform ionic species of metals and metalloids (arsenic, antimony, bismuth, selenium, tellurium and mercury) into volatile and mostly toxic derivatives (mainly methyl derivatives or hydrides). Since the fact that these transformations proceed in both environmental settings and in parts of the human body, we have to consider that these processes also interfere directly with human health. The diversity of the volatile derivatives produced and their emission rates were significantly higher in methanoarchaeal than in bacterial strains, which supports the pivotal role of methanoarchaea in transforming metals and metalloids (metal(loid)s) into their volatile derivatives. Compared with methanoarchaea, 14 anaerobic bacterial strains showed a significantly restricted spectrum of volatilised derivatives and mostly lower production rates of volatile bismuth and selenium derivatives. Since methanoarchaea isolated from the human gut (Methanosphaera stadtmanae, Methanobrevibacter smithii) showed a higher potential for metal(loid) derivatisation compared to bacterial gut isolates, we assume that methanoarchaea in the human gut are mainly responsible for the production of these volatile derivatives. The observation that trimethylbismuth ((CH(3))(3)Bi), the main volatile derivative of bismuth produced in human feces, inhibited growing cultures of Bacteroides thetaiotaomicron, a representative member of the human physiological gut flora, suggests that these volatiles exert their toxic effects on human health not only by direct interaction with host cells but also by disturbing the physiological gut microflora.  相似文献   

16.
Antifungal activity of organobismuth(III) and (V) compounds 1-9 was examined against the yeast, Saccharomyces cerevisiae. A clear structure-activity relationship was observed in these compounds. Thus, triarylbismuth dichlorides 2 [(4-YC6H4)3BiCl2: Y=MeO, F, Cl, CF3, CN, NO2] and halobismuthanes 6 [2-(t)BuSO2C6H4(4-YC6H4)BiX: Y=MeO, Me, H, Cl; X=Cl, Br, I], 7 [Bi(X)(C6H4-2-SO2C6H4-1'-): X=Cl, Br, I], 8 [2-Me2NCH2C6H4(Ph)BiX: X=Cl, Br] and 9 [4-MeC6H4(8-Me2NC10H6-1-)BiCl] showed the growth inhibition effect, while triarylbismuth difluorides 3 [(4-YC6H4)3BiF2] and triarylbismuthanes 1 [(4-YC6H4)3Bi], 4 [2-(t)BuSO2C6H4(4-YC6H4)2Bi] and 5 [4-YC6H4Bi(C6H4-2-SO2C6H4-1'-)] were not active at all irrespective of the nature of the substituents. Generation of the inhibition effect is governed by the facility of nucleophilic reaction at the bismuth center and the Lewis acidic bismuth center is an active site. Of all the bismuth compounds attempted, halobismuthanes 7 derived from diphenyl sulfone exhibited the highest activities. An X-ray crystallographic study of 7a [Bi(Cl)(C6H4-2-SO2C6H4-1'-)] revealed that the bismuth center adopts a seven-coordinated geometry, which is unusual in organobismuth(III) compounds, through the intramolecular and intermolecular coordination between the bismuth and oxygen atoms. The marked inhibition effect of 7 may be attributed to such a highly coordinated geometry, which allows the bismuth center to bind tightly with some biomolecules playing important roles in the growth of S. cerevisiae.  相似文献   

17.
The enzymatic hydrolysis of fructose 1,6-bisphosphate (Fru-1,6-P2) to fructose 6-phosphate (Fru-6-P) and inorganic phosphate (Pi), which is catalyzed by fructose-1,6-bisphosphatase, has been studied by 31P nuclear magnetic resonance spectroscopy (NMR). At pH 7.5 and 15 degrees C, the equilibrium constant for the central complex K'eq = [E.Fru-6-P.Pi]/[E.Fru-1,6-P2.H2O] is about 2. This observation is in harmony with results obtained with a number of Bi Bi enzyme systems for the determination of K'eq in which a variety of experimental techniques were used (Knowles, J.R. (1980) Annu. Rev. Biochem. 49, 877-919). Significant changes in 31P NMR chemical shifts were observed for both the substrate, Fru-1,6-P2, and the product, Fru-6-P, when bound to the enzyme relative to ligand free in solution. The chemical shifts of the substrate and product were altered further in the presence of Mg2+, the catalytic divalent metal ion. The chemical shifts caused by the addition of metal ion can be reversed in the presence of trans-1,2-diaminocyclohexane- N,N,N',N'-tetraacetic acid (CDTA) or AMP. In the presence of the metal ion chelator or the nucleotide, the substrate had a chemical shift that was about the same as that observed in the absence of metal ion. On the basis of these observations we suggest that AMP and CDTA exhibit similar effects, i.e. they both remove the catalytic metal ion from the enzyme. This finding is supportive of the suggestion (Scheffler, J. E., and Fromm, H.J. (1986) Biochemistry 25, 6659-6665; Liu, F., and Fromm, H.J. (1990) J. Biol. Chem. 265, 7401-7406) that the role of AMP in the regulation of fructose-1,6-bisphosphatase is to prevent binding of the divalent metal activator to the enzyme.  相似文献   

18.
The present study shows that feces samples of 14 human volunteers and isolated gut segments of mice (small intestine, cecum, and large intestine) are able to transform metals and metalloids into volatile derivatives ex situ during anaerobic incubation at 37 degrees C and neutral pH. Human feces and the gut of mice exhibit highly productive mechanisms for the formation of the toxic volatile derivative trimethylbismuth [(CH(3))(3)Bi] at rather low concentrations of bismuth (0.2 to 1 mumol kg(-1) [dry weight]). An increase of bismuth up to 2 to 14 mmol kg(-1) (dry weight) upon a single (human volunteers) or continuous (mouse study) administration of colloidal bismuth subcitrate resulted in an average increase of the derivatization rate from approximately 4 pmol h(-1) kg(-1) (dry weight) to 2,100 pmol h(-1) kg(-1) (dry weight) in human feces samples and from approximately 5 pmol h(-1) kg(-1) (dry weight) to 120 pmol h(-1) kg(-1) (dry weight) in mouse gut samples, respectively. The upshift of the bismuth content also led to an increase of derivatives of other elements (such as arsenic, antimony, and lead in human feces or tellurium and lead in the murine large intestine). The assumption that the gut microbiota plays a dominant role for these transformation processes, as indicated by the production of volatile derivatives of various elements in feces samples, is supported by the observation that the gut segments of germfree mice are unable to transform administered bismuth to (CH(3))(3)Bi.  相似文献   

19.
Circular dichroism spectroscopy has been used to investigate the influence of polylysine and polyarginine on the transition to a condensed state of DNA brought about by high concentrations of polyethyleneglycol and salt. From the dependence on DNA concentration of the CD signals, the anomalous CD of free DNA in polyethyleneglycol/salt solution was attributed to the intermolecular association of DNA molecules. The CD spectral changes in polyethyleneglycol/salt solution of the DNA - polylysine complex were indistinguishable from those of free DNA while the DNA-polyarginine complex suffered much smaller spectral changes as compared with free DNA, at low DNA concentrations where time-independent CD spectra were observed in polyethyleneglycol/salt solution for both the complexed and free DNA. The repression of the spectral change by the latter complex was more remarkable at higher ratios of polyarginine to DNA. The facts indicate that, whereas polylysine binding has little influence on the intermolecular structural transition of double-stranded DNA into a compact molecular configuration in polyethyleneglycol/salt solution, polyarginine binding has an effect of inhibiting the transition.  相似文献   

20.
L-lactide was polymerized as concentrated solution in chlorobenzene with Bi(OAc)3 as initiator. When tetra(ethylene glycol) was added as co-initiator (CoI), telechelic polylactides having two CH-OH end groups were obtained. With 1,1,1-tri(hydroxy methyl)propane (THMP) as co-initiator, three-armed stars having three CH-OH end groups were formed. Analogously, tetrafunctional star-shaped poly(L-lactide)s were obtained with pentaerythritol as co-initiator. The chain lengths were varied via the monomer/CoI ratio. Time-conversion curves proved that Bi(OAc)3 is slightly less reactive as initiator than tin(II) 2-ethylhexanoate. However, bismuth acetate (or other carboxylates) have a particularly low toxicity as documented in the literature and by numerous Bi3+-containing pharmaceutical products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号