首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of 17 Xanthomonas campestris pathotype strains, three additional X. campestris strains, and the type strain of Xanthomonas albilineans were examined by DNA-DNA hybridization tests. The results coupled with those of a previous study (Hildebrand et al. 1990) support the hypothesis that X. campestris does not constitute a single bacterial species. There were low levels of DNA-DNA reassociation among many of the different pathovars examined. Six clusters of related pathovars were discerned. In addition, four of the pathovars were only distantly related to each other and to the six clusters. Xanthomonas albilineans was not closely related to any of the other xanthomonads tested.
Mapping and superimposing the botanical families of the host plants upon a three-dimensional genomic distance matrix of the xanthomonads confirms previous observations that pathovars that infect plants of the same botanical family do not necessarily belong to the same genomic group. Six legume-infecting pathovars cluster within one genomic group, but one pathovar, X. cam. pv. pisi is only distantly related to this group. There was also no genomic relationship between X. cam. pv. oryzicola and X. albilineans both of which infect Gramineae. Consequently, pathogenicity toward members of the same plant family is not a good indicator of the genomic relationships among xanthomonads nor is it a good taxonomic determinant.  相似文献   

2.
A nutritional screen of 143 carbon sources was done on 88 strains of xanthomonads from 39 different Xanthomonas campestris pathovars, X. albilineans, X.fragariae , and ' X. gardneri '. Six compounds, cellobiose, fructose, fumarate, glucose, L-malate and succinate supported growth of all strains except X. albilineans , whereas 92 substrates were not utilized by any strain. Substrate utilization patterns appeared sufficiently uniform among the various genomic groups within Xanthomonas to allow their differentiation. The most easily distinguished pathovars were X. cam . pv. oryzicola and X. cam. secalis of genomic groups 4 and 3, respectively, because they used few substrates. Genomic group 1 was the most difficult to distinguish because utilization patterns differed substantially among the pathovars that comprise the group. Substrate utilization was useful for distinguishing pathovars within genomic groups. For example, X. campestris pv. pelargonii of genomic group 5 was differentiated from X. cam. carotae, X. cam. taraxaci , and ' X. gardneri ' by growth on aconitate but not D-tartrate. Similarly, use of D-tartrate differentiated X. celebensis from X. cam. pv. juglandis within group 6. Sorbitol was utilized only by X. cam. pv. plantaginis of group 2 and arabitol was a useful substrate for identifying X. cam. pv. pisi and pv. eucalypti . Most patterns of carbon utilization were confirmed with Biolog tests but there were exceptions as was found with utilization of glycerol and D-arabitol. The Biolog test also revealed some differences in carbon utilization not detected by standard tests of carbon substrates. It is concluded that nutritional screening has promise for identifying genomic groups and various pathovars within the genus Xanthomonas .  相似文献   

3.
Two DNA fragments from Xanthomonas albilineans were used as probes to study the molecular diversity among strains of this pathogen. Two serologically distinct groups, serovars I and II, could be differentiated by hybridization to the probes. These probes, designated 830 and 838, were cloned after subtractive DNA hybridization of common sequences of Xanthomonas campestris pv. vasculorum from a serovar I strain of X. albilineans. They did not hybridize to the DNA of several other xanthomonads or to sugarcane DNA under the conditions of hybridization used. Faint bands were observed upon hybridization of probe 830 with one strain of X. campestris pv. phaseoli. The same banding patterns were obtained with a strain of X. albilineans from Burkina Faso and the serovar II strains of Mauritius. The serovar I strains from Mauritius and two other strains each from Reunion and South Africa had similar pattern.  相似文献   

4.
Phytosanitary regulations and the provision of plant health certificates still rely mainly on long and laborious culture-based methods of diagnosis, which are frequently inconclusive. DNA-based methods of detection can circumvent many of the limitations of currently used screening methods, allowing a fast and accurate monitoring of samples. The genus Xanthomonas includes 13 phytopathogenic quarantine organisms for which improved methods of diagnosis are needed. In this work, we propose 21 new Xanthomonas-specific molecular markers, within loci coding for Xanthomonas-specific protein domains, useful for DNA-based methods of identification of xanthomonads. The specificity of these markers was assessed by a dot blot hybridization array using 23 non-Xanthomonas species, mostly soil dwelling and/or phytopathogens for the same host plants. In addition, the validation of these markers on 15 Xanthomonas spp. suggested species-specific hybridization patterns, which allowed discrimination among the different Xanthomonas species. Having in mind that DNA-based methods of diagnosis are particularly hampered for unsequenced species, namely, Xanthomonas fragariae, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas fuscans subsp. fuscans, for which comparative genomics tools to search for DNA signatures are not yet applicable, emphasis was given to the selection of informative markers able to identify X. fragariae, X. axonopodis pv. phaseoli, and X. fuscans subsp. fuscans strains. In order to avoid inconsistencies due to operator-dependent interpretation of dot blot data, an image-processing algorithm was developed to analyze automatically the dot blot patterns. Ultimately, the proposed markers and the dot blot platform, coupled with automatic data analyses, have the potential to foster a thorough monitoring of phytopathogenic xanthomonads.  相似文献   

5.
Real-time (TaqMan) PCR assays were developed to detect the strawberry angular leaf spot pathogen Xanthomonas fragariae (Xf) and the strawberry bacterial blight pathogen Xanthomonas arboricola pv. fragariae (Xaf). The Xf PCR (Xf gyrB) was designed within regions of the gyraseB gene, unique to Xf, after generating gyraseB DNA sequence data from Xf and other closely related strains. The Xaf PCR (Xaf pep) was designed within regions of the pep prolyl endopeptidase gene that were unique to Xaf, after generating pep DNA sequence data from Xf and Xaf strains. The Xf gyrB PCR detected only Xf strains amongst a panel of 20 Xanthomonas-related spp. and pathovars. The Xaf pep PCR assay detected all Xaf strains tested plus two other (of three tested) X. arboricola pathovars. An existing genomic DNA extraction protocol was modified to facilitate detection of both pathogens to 10(3) cells per strawberry leaf disc.  相似文献   

6.
Efficient control of Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, requires a sensitive and reliable diagnostic tool. A PCR detection method that utilizes primers to target the hrp gene cluster region was developed in this study. The nucleotide sequence of the PCR product amplified with primers specific for the hrp region of the xanthomonads and genomic DNA of X. arboricola pv. pruni was determined, and the sequence was aligned with that of X. campestris pv. campestris, which was obtained from the GenBank database. On the basis of the sequence of the amplified hrp region, a PCR primer set of XapF/R specific to X. arboricola pv. pruni was designed. This primer set yielded a 243-bp product from the genomic DNA of X. aboricola pv. pruni strains, but no products from other 21 strains of Xanthomonas or from two epiphytic bacterial species. Southern blot hybridization with the probe derived from the PCR product with the primer set and X. aboricola pv. pruni DNA confirmed the PCR results. The Xap primer system was successfully applied to detect the pathogen from infected peach fruits. When it was applied in field samples, the primer set was proved as a reliable diagnostic tool for specific detection of X. aboricola pv. pruni from peach orchards.  相似文献   

7.
The random amplified polymorphic DNA method was used to distinguish strains of Xanthomonas campestris pv. pelargonii from 21 other Xanthomonas species and/or pathovars. Among the 42 arbitrarily chosen primers evaluated, 3 were found to reveal diagnostic polymorphisms when purified DNAs from compared strains were amplified by the PCR. The three primers revealed DNA amplification patterns which were conserved among all 53 strains tested of X. campestris pv. pelargonii isolated from various locations worldwide. The distinctive X. compestris pv. pelargonii patterns were clearly different from those obtained with any of 46 other Xanthomonas strains tested. An amplified 1.2-kb DNA fragment, apparently unique to X. campestris pv. pelargonii by these random amplified polymorphic DNA tests, was cloned and evaluated as a diagnostic DNA probe. It hybridized with total DNA from all 53 X. campestris pv. pelargonii strains tested and not with any of the 46 other Xanthomonas strains tested. The DNA sequence of the terminal ends of this 1.2-kb fragment was obtained and used to design a pair of 18-mer oligonucleotide primers specific for X. campestris pv. pelargonii. The custom-synthesized primers amplified the same 1.2-kb DNA fragment from all 53 X. campestris pv. pelargonii strains tested and failed to amplify DNA from any of the 46 other Xanthomonas strains tested. DNA isolated from saprophytes associated with the geranium plant also did not produce amplified DNA with these primers. The sensitivity of the PCR assay using the custom-synthesized primers was between 10 and 50 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
A collection of 51 Xanthomonas campestris strains from throughout the world was studied to detect and assess genetic diversity among pathogens of small grains. Isolates from barley, bread wheat, bromegrass, canary grass, cassava, maize, orchard grass, rice, rough-stalked meadow grass, rye, timothy, and triticale were analyzed by pathogenicity tests on bread wheat cv. Alondra and barley cv. Corona, indirect immunofluorescence, and restriction fragment length polymorphism (RFLP). Three probes were used for the RFLP analysis. They were an acetylaminofluorene-labelled 16S+23S rRNA probe from Escherichia coli and two (sup32)P-labelled restriction fragments from either plasmidic (pBSF2) or chromosomal (pBS8) DNA of X. campestris pv. manihotis. Strains clustered in 9 and 20 groups with the rRNA probe and the pBSF2 DNA probe, respectively. Strains of X. campestris pv. graminis, X. campestris pv. phleipratensis, and X. campestris pv. poae are shown to be related but are also distinguishable by RFLP patterns, serology, and pathogenicity on bread wheat. Strains pathogenic only for barley and not for wheat grouped together. Another group is temporarily designated deviant X. campestris pv. undulosa. These South American isolates from bread wheat did not react by indirect immunofluorescence and produced atypical lesions in pathogenicity tests. The results stress the need to perform pathogenicity tests before strains are named at the pathovar level. The importance of the different probes used for epidemiological studies or phylogenetic studies of closely related strains is underlined.  相似文献   

10.
Thirty-five Xanthomonas campestris pv. oryzae, fourteen X. campestris pv. oryzicola strains and six 'brown blotch' pathogens of rice, all of different geographical origin, were studied by numerical analysis of 133 phenotype features and gel electrophoregrams of soluble proteins, %G + C determinations and DNA:rRNA hybridizations. The following conclusions were drawn. (i) The Xanthomonas campestris pathovars oryzae and oryzicola display clearly distinct protein patterns on polyacrylamide gels and can be differentiated from each other by four phenotype tests. (ii) Both pathovars are indeed members of Xanthomonas which belongs to a separate rRNA branch of the second rRNA superfamily together with the rRNA branches of Pseudomonas fluorescens, Marinomonas, Azotobacter, Azomonas and Frateuria. (iii) 'Brown blotch' strains are considerably different from X. campestris pv. oryzae and oryzicola. They are not members of the genus Xanthomonas, but are more related to the generically misnamed. Flavobacterium capsulatum, Pseudomonas paucimobilis, Flavobacterium devorans and 'Pseudomonas azotocolligans' belonging in the fourth rRNA superfamily. (iv) No correlation was found between the virulence, pathogenic groups or geographical distribution of X. campestris pv. oryzae or oryzicola strains and any phenotypic or protein electrophoretic property or clustering.  相似文献   

11.
Xanthomonas albilineans is a xylem-invading pathogen that produces the toxin albicidin that blocks chloroplast differentiation, resulting in disease symptoms of sugarcane leaf scald. In contrast to other xanthomonads, X. albilineans does not possess a hypersensitive response and pathogenicity type III secretion system and does not produce xanthan gum. Albicidin is the only previously known pathogenicity factor in X. albilineans, yet albicidin-deficient mutant strains are still able to efficiently colonize sugarcane. To identify additional host adaptation or pathogenicity factors, sugarcane 'CP80-1743' was inoculated with 1,216 independently derived Tn5 insertions in X. albilineans XaFL07-1 from Florida. Sixty-one Tn5 mutants were affected in development of leaf symptoms or in stalk colonization. The Tn5 insertion sites of these mutants were determined and the interrupted genes were identified using the recently available genomic DNA sequence of X. albilineans GPE PC73 from Guadeloupe. Several pathogenicity-related loci that were not previously reported in Xanthomonas spp. were identified, including loci encoding hypothetical proteins, a membrane fusion protein conferring resistance to novobiocin, transport proteins, TonB-dependent outer-membrane transporters, and an OmpA family outer-membrane protein.  相似文献   

12.
Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria.  相似文献   

13.
Filamentous bacteriophages have very strict host specificities. Experiments were performed to investigate whether the A protein of the filamentous phage Cf, which infects Xanthomonas campestris pv. citri but not X. campestris pv. oryzae, is involved in determining Cf's host specificity. The gene encoding the A protein of Cf was cloned and expressed in X. campestris pv. citri. The genomic DNA of another filamentous bacteriophage, Xf, which infects X. campestris pv. oryzae but not X. campestris pv. citri, was then introduced by electroporation into X. campestris pv. citri that had expressed the A protein of Cf. The progeny phages thus produced were able to infect both X. campestris pv. oryzae and X. campestris pv. citri, indicating that the A protein of Cf was incorporated into the viral particles of Xf and conferred upon Xf the ability to infect the host of Cf. Inactivation of the A protein gene abolished the infectivity of Cf. The results of this study indicate that the A protein of Cf is responsible for controlling the host specificity of Cf.  相似文献   

14.
Abstract: It has been reported that all tested naturally occurring strains of Xanthomonas campestris pv. campestris that are known to be capable of inducing blight symptoms in cabbage react with MAb A11 and hybridize with a 5.4-kb DNA fragment (in plasmid pJC41), cloned from the Xanthomonas campestris species type strain, Xcc528T, whereas all tested naturally occurring strains that do not cause blight react with MAb X21 and do not hybridize to pJC41. The roles of the 5.4-kb DNA in pJC41 and the epitope recognized by MAb A11 in the pathogenicity of X. c. campestris strains that cause blight were examined by mutational analyses. A 4.0-kb deletion of the pJC41 region on the Xcc528T chromosome was created by marker exchange, but the derivatives were evidently not affected in their ability to elicit blight symptoms. Nitrosoguanidine was used to mutagenize two blight strains, Xcc528T and CAM19, and mutants were selected that were not reactive to MAb A11. The MAb A11-negative mutant of Xcc528T was reactive to MAb X21, but was evidently not affected in the ability to elicit blight symptoms. MAb A11-negative mutants of CAM19, however, were not reactive to MAb X21, and showed reduction or loss of virulence, which suggested the requirement for at least one of the two antigens (to MAbs A11 or X21) for pathogenicity. A genomic library of CAM19 was made and screened for genes responsible for the production of the A11 antigen. Cosmid clones were identified that restored MAb A11 reactivity to the mutants. None of these cosmids restored the virulence of the mutant strains that had lost virulence. Therefore, neither the blight-associated 5.4-kb DNA fragment nor the MAb A11 antibody marker were required for blight symptom elicitation or pathogenicity.  相似文献   

15.
Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.  相似文献   

16.
T. Oku    Y. Wakasaki    N. Adachi    C. I. Kado    K. Tsuchiya  T. Hibi 《Journal of Phytopathology》1998,146(4):197-200
Xanthomonas campestris pv. campestris and X. oryzae pv, oryzae contain the 1428 base pair hrpX gene whose product is involved in the regulation oi hrp genes required for pathogericity, non-host hypersensitivity and non-permissibility of compatible host defence responses. Previous Southern blot hybridization studies have suggested that hrpX is conserved in several X. campestris pathovars and X. oryzae. strains. We have confirmed and extended these findings using hrpX gene amplification by polymerase chain reaction, coupled with Southern blot hybridization analyses. Sixteen distinct pathovars of X. campestris and 12 strains of X. oryzae pv, oryzae were shown to contain homologs of hrpX which were not apparent in heterologous bacteria such as Agrobacterium tumefaciens, A. rhizogenes, Erwinia carolovora ssp. carotovora, Pseudomonas syringae pv, glycinea. P. syringae pv, labaci , and Escherichia coli. The hrpX gene is therefore highly conserved among Xanthomonas species and its gene product strongly resembles positive regulatory proteins of the AraC protein family,  相似文献   

17.
Races of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, interact with cultivars of rice in a gene-for-gene specific manner. Multiple DNA fragments of various sizes from all strains of X. o. pv. oryzae hybridized with avrBs3, an avirulence gene from Xanthomonas campestris pv. vesicatoria, in Southern blots; this suggests the presence of several homologs and possibly a gene family. A genomic library of a race 2 strain of X. o. pv. oryzae, which is avirulent on rice cultivars carrying resistance genes xa-5, Xa-7, and Xa-10, was constructed. Six library clones, which hybridized to avrBs3, altered the interaction phenotype with rice cultivars carrying either xa-5, Xa-7, or Xa-10 when present in a virulent race 6 strain. Two avirulence genes, avrXa7 and avrXa10, which correspond to resistance genes Xa-7 and Xa-10, respectively, were identified and partially characterized from the hybridizing clones. On the basis of transposon insertion mutagenesis, sequence homology, restriction mapping, and the presence of a repeated sequence, both genes are homologs of avirulence genes from dicot xanthomonad pathogens. Two BamHI fragments that are homologous to avrBs3 and correspond to avrXa7 and avrXa10 contain a different number of copies of a 102-bp direct repeat. The DNA sequence of avrXa10 is nearly identical to avrBs3. We suggest that avrXa7 and avrXa10 are members of an avirulence gene family from xanthomonads that control the elicitation of resistance in mono- and dicotyledonous plants.  相似文献   

18.
pFL1 is a pUC9 derivative that contains a 572-bp EcoRI insert cloned from plasmid DNA of Xanthomonas campestris pv. citri XC62. The nucleotide sequence of pFL1 was determined, and the sequence information was used to design primers for application of the polymerase chain reaction (PCR) to the detection of X. campestris pv. citri, the causal agent of citrus bacterial canker disease. Seven 18-bp oligonucleotide primers were designed and tested with DNA from X. campestris pv. citri strains and other strains of X. campestris associated with Citrus spp. as templates in the PCR. Four primer pairs directed the amplification of target DNA from X. campestris pv. citri strains but not from strains of X. campestris associated with a different disease, citrus bacterial spot. Primer pair 2-3 directed the specific amplification of target DNA from pathotype A but not other pathotypes of X. campestris pv. citri. A pH 9.0 buffer that contained 1% Triton X-100 and 0.1% gelatin was absolutely required for the successful amplification of the target DNA, which was 61% G+C. Limits of detection after amplification and gel electrophoresis were 25 pg of purified target DNA and about 10 cells when Southern blots were made after gel electrophoresis and probed with biotinylated pFL1. This level of detection represents an increase in sensitivity of about 100-fold over that of dot blotting with the same hybridization probe. PCR products of the expected sizes were amplified from DNA extracted from 7-month-old lesions from which viable bacteria could not be isolated. These products were confirmed to be specific for X. campestris pv. citri by Southern blotting. This PCR-based detection protocol will be a useful addition to current methods of detection of this pathogen, which is currently the target of international quarantine measures.  相似文献   

19.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a Tn5-induced virulence-deficient mutant (BXO1704) of X. oryzae pv. oryzae. The BXO1704 mutant exhibited growth deficiency in minimal medium but was proficient in inducing a hypersensitive response in a non-host tomato plant. Sequence analysis of the chromosomal DNA flanking the Tn5 insertion indicated that the Tn5 insertion is in the purH gene, which is highly homologous to purH genes of other closely related plant pathogenic bacteria Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris. Purine supplementation reversed the growth deficiency of BXO1704 in minimal medium. These results suggest that the virulence deficiency of BXO1704 may be due to the inability to use sufficient purine in the host.  相似文献   

20.
Mauritius is one of the largest world producers of Anthurium cut flowers but outbreaks of bacterial blight have never been reported on the island. This work was about the characterisation and identification of bacterial strains isolated from Anthurium andreanum, Dieffenbachia maculata and Aglaonema simplex in Mauritius. Fifteen strains, that showed the morphological properties of Xanthomonas on conventional media, were tested on two semi-selective media (Esculin-trehalose and cellobiose-starch). ELISA tests using a panel of monoclonal antibodies were carried out and three out of 15 strains reacted with a Xanthomonas-specific monoclonal antibody (MAb XII). Analysis using four sets of ribosomal primers revealed that the same three Mauritius strains shared conserved PCR products with reference xanthomonads including virulent strains of Xanthomonas axonopodis pv. dieffenbachiae (Xad). BIOLOG tests and the Sherlock Microbial Identification system (MIDI) identified these three new strains at the species level as X. axonopodis. The complementary tests that were carried out clearly confirmed that the three strains are xanthomonads and, moreover, a DNA probe which showed specificity to Xad strains suggested that the three Mauritius strains are non-virulent forms of the pathogen causing Anthurium blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号