首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.  相似文献   

2.
Cancer results from genetic alterations that disturb the normal cooperative behavior of cells. Recent high-throughput genomic studies of cancer cells have shown that the mutational landscape of cancer is complex and that individual cancers may evolve through mutations in as many as 20 different cancer-associated genes. We use data published by Sjöblom et al. (2006) to develop a new mathematical model for the somatic evolution of colorectal cancers. We employ the Wright-Fisher process for exploring the basic parameters of this evolutionary process and derive an analytical approximation for the expected waiting time to the cancer phenotype. Our results highlight the relative importance of selection over both the size of the cell population at risk and the mutation rate. The model predicts that the observed genetic diversity of cancer genomes can arise under a normal mutation rate if the average selective advantage per mutation is on the order of 1%. Increased mutation rates due to genetic instability would allow even smaller selective advantages during tumorigenesis. The complexity of cancer progression can be understood as the result of multiple sequential mutations, each of which has a relatively small but positive effect on net cell growth.  相似文献   

3.
Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.  相似文献   

4.
F-box and WD repeat domain-containing 7 (FBW7) is the substrate recognition component of the Skp1-Cul1-F-box (SCF) ubiquitin ligase complex and functions as a major tumor suppressor by targeting various oncoproteins for degradation. Genomic deletion or mutation of FBW7 has frequently been identified in many human cancers but not in pancreatic ductal adenocarcinoma. Thus it is important to know how the tumor suppressive function of FBW7 is impaired in pancreatic cancer. In this study, we first observed that low FBW7 expression correlated significantly with ERK activation in pancreatic cancer clinical samples, primarily due to KRAS mutations in pancreatic cancer. We further showed that ERK directly interacted with FBW7 and phosphorylated FBW7 at Thr205, which sequentially promoted FBW7 ubiquitination and proteasomal degradation. Furthermore, the phospho-deficient T205A FBW7 mutant is resistant to ERK activation and could significantly suppress pancreatic cancer cell proliferation and tumorigenesis. These results collectively demonstrate how the oncogenic KRAS mutation inhibits the tumor suppressor FBW7, thus revealing an important function of KRAS mutations in promoting pancreatic cancer progression.  相似文献   

5.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

6.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

7.
8.

Background

Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome.

Results

We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis.

Conclusions

We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.  相似文献   

9.
10.
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.  相似文献   

11.
The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression.  相似文献   

12.
Mutations in the shelterin protein POT1 are associated with chronic lymphocytic leukemia (CLL), Hodgkin lymphoma, angiosarcoma, melanoma, and other cancers. These cancer‐associated POT1 (caPOT1) mutations are generally heterozygous, missense, or nonsense mutations occurring throughout the POT1 reading frame. Cancers with caPOT1 mutations have elongated telomeres and show increased genomic instability, but which of the two phenotypes promotes tumorigenesis is unclear. We tested the effects of CAS9‐engineered caPOT1 mutations in human embryonic and hematopoietic stem cells (hESCs and HSCs, respectively). HSCs with caPOT1 mutations did not show overt telomere damage. In vitro and in vivo competition experiments showed the caPOT1 mutations did not confer a selective disadvantage. Since DNA damage signaling is known to affect the fitness of HSCs, the data argue that caPOT1 mutations do not cause significant telomere damage. Furthermore, hESC lines with caPOT1 mutations showed no detectable telomere damage response while showing consistent telomere elongation. Thus, caPOT1 mutations are likely selected for during cancer progression because of their ability to elongate telomeres and extend the proliferative capacity of the incipient cancer cells.  相似文献   

13.
Receptor tyrosine kinases (RTKs) are involved in oncogenesis and disease progression for many cancers. Inhibitors targeting them are vigorously developed and some of them are tested in the clinical setting. Amplifications of certain RTKs (c-Met, FGFR2 and ErbB2) have been associated with human gastric cancer progression. According to our genome-wide scans of genetic lesions in 34 gastric cancer cell lines using high-density single-nucleotide polymorphism genotyping microarrays, we confirmed that the c-met locus was amplified in four gastric cancer cell lines (Hs746T, MKN45, NUGC4 and SNU5). It was reported that somatic mutation is occasionally detected in tumor samples of a certain type of cancer with gene amplification. Previous reports showed gastric cancers harbored mutations of FGFR2 and ErbB2, but c-Met oncogenic mutation had not yet been reported. We performed mutational analysis of the cytoplasmic domains of c-Met using the genome DNA of the gastric cancer cell lines, and found that Hs746T cells had a splice site mutation of exon 14. By cDNA sequencing and Western blotting, we showed that the mutation caused juxtamembrane domain deletion. Previously, this mutation had been detected only in lung cancer specimens and this deletion resulted in the loss of Cbl E3-ligase binding causing decreased ubiquitination and delayed down-regulation. In conclusion, four gastric cancer cell lines harbored amplification of c-met locus, and among them, Hs746T had a putative oncogenic mutation with amplification. This information will be useful for screening of inhibitors targeting gastric cancer with c-Met aberration.  相似文献   

14.
Small-cell carcinoma of the esophagus (SCCE) is a rare and aggressive cancer. Although several consistent genomic changes were observed previously between SCCE and small-cell lung cancer (SCLC), detailed mutational landscapes revealing discrepancies in genetic underpinnings of tumorigenesis between these two cancers are scarce, and little attention has been paid to answer whether these genetic alterations were related to the prognosis. Herein by performing whole-exome sequencing of 48 SCCE and 64 SCLC tumor samples, respectively we have shown that the number of driver mutations in SCCE was significantly lower than in SCLC (p = 0.0042). In SCCE, 46% of recurrent driver mutations were clonal, which occurred at an early stage during tumorigenesis, while 16 driver mutations were found clonal in SCLC. NOTCH1/3, PIK3CA, and ATM were specifically clonal in SCCE, while TP53 was clonal in SCLC. The total number of clonal mutations differed between two cancers and presented lower in SCCE compared to SCLC (p = 0.0036). Moreover, overall survival (OS) was shorter in patients with higher numbers of clonal mutations for both cancers. In summary, SCCE showed distinct mutational background and clonal architecture compared with SCLC. Organ-specific clonal events revealed different molecular mechanisms underlying tumorigenesis, tumor development, patients’ prognosis, and possible variations in therapeutic outcomes to candidate treatments.Subject terms: Oesophageal cancer, Small-cell lung cancer  相似文献   

15.
Somatic mutations in the TP53 gene are one of the most frequent alterations in human cancers, and germline mutations are the underlying cause of Li-Fraumeni syndrome, which predisposes to a wide spectrum of early-onset cancers. Most mutations are single-base substitutions distributed throughout the coding sequence. Their diverse types and positions may inform on the nature of mutagenic mechanisms involved in cancer etiology. TP53 mutations are also potential prognostic and predictive markers, as well as targets for pharmacological intervention. All mutations found in human cancers are compiled in the IARC TP53 Database (http://www-p53.iarc.fr/). A human TP53 knockin mouse model (Hupki mouse) provides an experimental model to study mutagenesis in the context of a human TP53 sequence. Here, we summarize current knowledge on TP53 gene variations observed in human cancers and populations, and current clinical applications derived from this knowledge.Genetic variations in the tumor suppressor gene TP53 (OMIM #191117) contribute to human cancers in different ways. First, somatic mutations are frequent in most cancers (Hollstein et al. 1991). The antiproliferative role of p53 protein in response to various stresses and during physiological processes such as senescence makes it a primary target for inactivation in cancer (Levine 1997). The main modes of TP53 inactivation are single-base substitution and loss of alleles, with inactivation by viral or cellular proteins playing a major role in specific cancers (Tommasino et al. 2003). Second, inheritance of a TP53 mutation causes predisposition to early-onset cancers including breast carcinomas, sarcomas, brain tumors, and adrenal cortical carcinomas, defining the Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes (Li et al. 1988; Olivier et al. 2003). Third, TP53 is highly polymorphic in coding and noncoding regions and some of these polymorphisms have been shown to increase cancer susceptibility and to modify cancer phenotypes in TP53 mutation carriers (Whibley et al. 2009).Whereas tumor suppressors are commonly inactivated by frameshift or nonsense mutations, most TP53 mutations are missense and cause single amino-acid changes at many different positions. Mutations are thus diverse in their type, sequence context, position, and structural impact, making it possible to identify mutation patterns in relation with cancer type and etiology. The occurrence of special mutation patterns may inform on the nature of the mutagens that have caused them, making TP53 an interesting gene to analyze in the realm of molecular epidemiology.Data on mutation prevalence in human cancer can be conveniently accessed through the IARC TP53 database (http://www-p53.iarc.fr/), a resource that compiles all TP53 gene variations reported in human cancers with annotations on tumor phenotype, patient characteristics, and structural and functional impact of mutations (Petitjean et al. 2007b). Recently, it has become possible to confront these observations with experimental data generated in a novel mouse model, the HupKi mouse, that contains a human TP53 sequence at the mouse TP53 locus and recapitulates the effects of environmental mutagens in a human sequence context (Luo et al. 2001). In this article, we review the current knowledge on the origin, causes, and consequences of TP53 variations and mutations in cancer and we discuss their significance as biomarkers in epidemiology and in the clinics.  相似文献   

16.
Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer.  相似文献   

17.
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.  相似文献   

18.
In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN)/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null) cells were of higher grade and proliferated faster than single mutant (Pten-null) cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis.  相似文献   

19.
A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins—including collagen I, collagen IV, and laminin V—to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane.  相似文献   

20.
C-reactive protein (CRP) is an established marker of inflammation with pattern-recognition receptor-like activities. Despite the close association of the serum level of CRP with the risk and prognosis of several types of cancer, it remains elusive whether CRP contributes directly to tumorigenesis or just represents a bystander marker. We have recently identified recurrent mutations at the SNP position -286 (rs3091244) in the promoter of CRP gene in several tumor types, instead suggesting that locally produced CRP is a potential driver of tumorigenesis. However, it is unknown whether the -286 site is the sole SNP position of CRP gene targeted for mutation and whether there is any association between CRP SNP mutations and other frequently mutated genes in tumors. Herein, we have examined the genotypes of three common CRP non-coding SNPs (rs7553007, rs1205, rs3093077) in tumor/normal sample pairs of 5 cancer types (n = 141). No recurrent somatic mutations are found at these SNP positions, indicating that the -286 SNP mutations are preferentially selected during the development of cancer. Further analysis reveals that the -286 SNP mutations of CRP tend to co-occur with mutated APC particularly in rectal cancer (p = 0.04; n = 67). By contrast, mutations of CRP and p53 or K-ras appear to be unrelated. There results thus underscore the functional importance of the -286 mutation of CRP in tumorigenesis and imply an interaction between CRP and Wnt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号