首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Acetylcholine and choline release was measured by using an automated and modified version of the chemiluminescence technique of Israel & Lesbats [(1981) Neurochem. Int. 3, 81-90]. A comparison of acetylcholine and choline release from synaptosomes demonstrated that acetylcholine release was K+-stimulated and inhibited by the Ca2+ ionophore A23187 and cyanide. Choline release, however, did not vary markedly under different conditions, suggesting that it is not associated with acetylcholine release at the nerve ending. Total acetylcholine synthesis in synaptosomal preparations was measured concurrently with the incorporation of [14C]acetyl and [3H]choline moieties by using the chemiluminescence method. Under sub-optimal glucose concentrations or in the absence of treatment of the synaptosomes with the acetylcholinesterase inhibitor phospholine, the incorporation of radioactivity exceeded total synthesis, indicating that cycling between acetylcholine and its precursors may occur. After treatment with phospholine, acetyl-group incorporation from D-[U-14C]glucose occurred without dilution of the precursor at optimal (1.0 mM) and low (0.1 mM) glucose concentrations; however, at very low (0.01 mM) glucose concentrations, dilution by a small endogenous pool occurred. [14C]Acetyl incorporation into acetylcholine was compared with various metabolic parameters. A closer correlation was observed between [14C]acetyl-group incorporation into acetylcholine and the calculated acetyl-carrier efflux from the mitochondria than with the calculated pyruvate-dehydrogenase-complex flux. The results are discussed with respect to the regulation of acetylcholine concentrations at the synapse and the mechanism whereby turnover occurs.  相似文献   

2.
The effects of Type A botulinum toxin on acetylcholine metabolism were studied using mouse brain slice and synaptosome preparations. Brain slices that had been incubated with the toxin for 2h exhibited a decreased release of acetylcholine into high K+ media. Botulinum toxin did not affect acetylcholine efflux from slices in normal K+ media. When labeled choline was present during the release incubation, a‘newly-synthesized’pool of acetylcholine was formed in the tissue. In toxin-treated slices exposed to high K+, both the production and the release of this‘newly-synthesized’acetylcholine were depressed. A possible explanation for these actions of botulinum toxin would be via an inhibition of the high affinity uptake of choline. This hypothesis was tested by measuring the high affinity uptake of [3H]choline into synaptosomes prepared from brain slices. Previous exposure of slices to botulinum toxin caused a significant reduction in the accumulation of label by the synaptosomes. These data are discussed in terms of our current understanding of the mechanism of action of botulinum toxin and the toxin's interaction with the mechanisms regulating acetylcholine turnover.  相似文献   

3.
Abstract: Crude and crystalline botulinum toxin type A have been compared for their ability to inhibit [14C]ACh release from synaptosomes preloaded with [14C]choline. The toxin preparations exhibited similar dose-response curves, with maximal inhibition at 105 mouse LD50/ml after 60 min preincubation. The time course for the inhibitory action of the toxin showed that inhibition develops almost linearly over this time period. However, free toxin could be removed from the synaptosome suspension after 15 min without altering the subsequent development of inhibition of [14C]ACh release, which suggests that the toxin is rapidly fixed by synaptosomes and that fixation alone cannot account for the latency of its action. Incorporation of gangliosides into synaptosomes by prior preincubation failed to increase the potency of the toxin, which implies that gangliosides do not serve as the membrane receptor for the toxin. Treatment of botulinum toxin with dithiothreitol greatly diminished its ability to inhibit [14C]ACh release and it is suggested that botulinum toxin may be analogous to other bacterial toxins in its structure and mode of action.  相似文献   

4.
In previous reports, we have shown that botulinum neurotoxin inhibits acetylcholine release from Torpedo marmorata electric organ and from its synaptosomal fraction. Here, we have focussed our attention on the study of the effect of botulinum neurotoxin on the metabolism of acetylcholine, namely, the precursors supply, the synthesis activity and the storage of the neurotransmitter into nerve endings isolated from Torpedo electric organ. Radiolabelled acetylcholine precursors (acetate and choline) uptake, choline O-acetyltransferase activity, and the compartmentalization of the transmitter into the synaptosomes were not modified by botullinum neurotoxin. When labelled nerve ending were depolarized by K+, the specific radioactivity of acetylcholine in the free pool fell markedly, but the specific radioactivity in the bound pool remained constant. Botulinum neurotoxin prevented this K+-induced decrease of specific radioactivity in the free pool.  相似文献   

5.
The action of botulinum neurotoxin type C1 on the release of acetylcholine from rat brain synaptosomes was studied by using anti-toxin heavy chain Fab and anti-toxin light chain Fab. The toxin was bound to synaptosomes at 0 degrees C for 10 min, in which [14C]acetylcholine had been accumulated previously. The toxin-binding synaptosomes were pre-incubated at 37 degrees C, and the release of acetylcholine was determined after the synaptosomes had been incubated in 25 mM KCl-incubation medium for 20 min at 37 degrees C. Inhibition of [14C]acetylcholine release from the synaptosomes was observed with increasing pre-incubation time and toxin concentration, and the maximum inhibition was seen after pre-incubation for at least 15 min, which was called the "lag time." The toxin-binding synaptosomes were reacted with anti-toxin heavy chain and anti-toxin light chain Fabs at 0 degrees C for 1.5 min before pre-incubation of the synaptosomes at 37 degrees C. Both Fabs reversed the acetylcholine release inhibition by the toxin. However, when the Fabs were added during the pre-incubation time at 37 degrees C, they showed less restoration with increasing pre-incubation time. The restoration was completely abolished if the Fabs were added to the synaptosomes after the first half of the "lag time." On the other hand, when 125I-labeled toxin-binding synaptosomes were reacted with the Fabs at 0 degrees C for 1.5 min before pre-incubation of the synaptosomes at 37 degrees C, anti-heavy chain Fab removed 125I-toxin from the synaptosomes, but anti-light chain Fab did not. However, if the Fabs were added to toxin-binding synaptosomes during the pre-incubation time at 37 degrees C, the Fabs could not remove 125I-toxin from the synaptosomes, and the synaptosomes retained more labeled toxin with increasing pre-incubation time. These results suggest that there are three distinct steps in the inhibition of acetylcholine release from synaptosomes by botulinum neurotoxin. The first is binding, which is reversible, temperature-independent, and mediated by the heavy chain of the toxin. The second is temperature-dependent internalization, that takes place in the first half of the "lag time," in which both the chains are internalized into synaptosomes. The third is the development of toxicity, which requires the latter half of the "lag time."  相似文献   

6.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

7.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

8.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

9.
Using a hippocampal subcellular fraction enriched in mossy fiber synaptosomes, evidence was obtained indicating that adenosine derived from a presynaptic pool of ATP may modulate the release of prodynorphin-derived peptides. and glutamic acid from mossy fiber terminals. Synaptosomal ATP was released in a Ca2+-dependent manner by K+-induced depolarization. The rapid hydrolysis of extracellular [14C]ATP in the presence of intact mossy fiber synaptosomes resulted in the production of [14C]adenosine. Micromolar concentrations of a stable adenosine analogue, 2-chloroadenosine, inhibited the K+-stimulated release of both dynorphin B and dynorphin A(1-8). 2-Chloroadenosine failed to suppress the evoked release of glutamic acid, measured in these same superfusates, unless the mossy fiber synaptosomes were pretreated with D-aspartic acid to deplete the cytosolic, Ca2+-independent, pool of this acidic amino acid. In synaptosomes pretreated in this manner, release of the remaining Ca2+-dependent pool of glutamic acid was significantly inhibited by NiCl2, 2-chloroadenosine, 5'-N-ethylcarboxamidoadenosine, cyclohexyladenosine, and R(-)-N6(2-phenylisopropyl)adenosine, but not by ATP. 2-Chloroadenosine-induced inhibition was reversed when the external CaCl2 concentration was raised from 1.8 mM to 6 mM. 8-Phenyltheophylline, an adenosine receptor antagonist, effectively blocked the inhibitory effects of 2-chloroadenosine on mossy fiber synaptosomes and significantly enhanced the K+-evoked release of both glutamic acid and dynorphin A(1-8) when added alone to the superfusion medium. These results support the proposition that depolarized hippocampal mossy fiber synaptosomes release endogenous ATP and are capable of forming adenosine from extracellular ATP, and that endogenous adenosine may act at a presynaptic site to inhibit the further release of glutamic acid and the prodynorphin-derived peptides.  相似文献   

10.
Botulinum C2 toxin is known to ADP-ribosylate actin. The toxin effect was studied on [3H]noradrenaline secretion of PC12 cells. [3H]Noradrenaline release was stimulated five- to 15-fold by carbachol (100 microM) or K+ (50 mM) and 10-30-fold by the ionophore A23187 (5 microM). Pretreatment of PC12 cells with botulinum C2 toxin for 4-8 h at 20 degrees C, increased carbachol-, K+-, and A23187-induced, but not basal, [3H]noradrenaline release maximally 1.5-to three-fold, whereas approximately 75% of the cellular actin pool was ADP-ribosylated. Treatment of PC12 cells with botulinum C2 toxin for up to 1 h at 37 degrees C also increased stimulated [3H]noradrenaline secretion, whereas toxin treatment for greater than 1 h decreased the enhanced [3H]noradrenaline release stimulated by carbachol and K+ but not by A23187. Concomitantly with toxin-induced stimulation of secretion, 20-50% of the cellular actin was ADP-ribosylated, whereas greater than 60% of actin was modified when exocytosis was attenuated. The data indicate that ADP-ribosylation of actin by botulinum C2 toxin largely modulates stimulation of [3H]noradrenaline release. Moreover, the biphasic toxin effects suggest that distinct mechanisms are involved in the role of actin in secretion.  相似文献   

11.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

12.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

13.
The effects of arachidonic acid on [3H]choline uptake, on [3H]acetylcholine accumulation, and on endogenous acetylcholine content and release in rat cerebral cortical synaptosomes were investigated. Arachidonic acid (10-150 microM) produced a dose-dependent inhibition of high-affinity [3H]choline uptake. Low-affinity [3H]choline uptake was also inhibited by arachidonic acid. Fatty acids inhibited high-affinity [3H]choline uptake with the following order of potency: arachidonic greater than palmitoleic greater than oleic greater than lauric; stearic acid (up to 150 microM) had no effect. Inhibition of [3H]choline uptake by arachidonic acid was reversed by bovine serum albumin. In the presence of arachidonic acid, there was an increased accumulation of choline in the medium, but this did not account for the inhibition of [3H]choline uptake produced by the fatty acid. Arachidonic acid inhibited the synthesis of [3H]acetylcholine from [3H]choline, and this inhibition was equal in magnitude to the inhibition of high-affinity [3H]choline uptake produced by the fatty acid. A K+-stimulated increase in [3H]acetylcholine synthesis was inhibited completely by arachidonic acid. Arachidonic acid also depleted endogenous acetylcholine stores. Concentrations of arachidonic acid and hemicholinium-3 that produced equivalent inhibition of [3H]choline uptake also produced equivalent depletion of acetylcholine content. In the presence of eserine, arachidonic acid had no effect on acetylcholine release. The results suggest that arachidonic acid may deplete acetylcholine content by inhibiting high-affinity choline uptake and subsequent acetylcholine synthesis. This raises the possibility that arachidonic acid may play a role in the impairment of cholinergic transmission seen in cerebral ischemia and other conditions in which large amounts of the free fatty acid are released in brain.  相似文献   

14.
Synaptosomes, prepared from rat cerebral cortex and hippocampus, were preincubated with [methyl-3H]choline. The effect of adenosine, cyclohexyladenosine, N-ethylcarboxamide adenosine, 2'-deoxyadenosine, and oxotremorine on K+-evoked 3H efflux was investigated. High-voltage electrophoretic separation showed that in the presence of physostigmine, the K+-evoked 3H efflux from hippocampal synaptosomes was 90% [3H]acetylcholine and 10% [3H]choline. Adenosine (30 microM) and oxotremorine (100 microM) both decreased [3H]acetylcholine release from hippocampal synaptosomes. The effect was inversely proportional to the KCl concentration and disappeared at a KCl concentration of 50 mM. Cyclohexyladenosine was approximately 3,000 times more active than adenosine, whereas N-ethylcarboxamide adenosine and 2'-deoxyadenosine were inactive. This indicates that A1 adenosine receptors were involved in the inhibitory effect. Caffeine antagonized the adenosine effect, and at a concentration of 100 microM, it stimulated [3H]acetylcholine efflux. The inhibitory effect of oxotremorine was as great in cortical as in hippocampal synaptosomes. In contrast, adenosine was much less active in cortical than in hippocampal synaptosomes. When inhibitory concentrations of adenosine and oxotremorine were added together into the incubation medium, the effect of adenosine on [3H]acetylcholine release was consistently reduced. An interaction between muscarinic and A1 adenosine presynaptic receptors at a common site modulating acetylcholine release can be assumed.  相似文献   

15.
Acetylcholine and choline release from rat brain synaptosomes have been measured using a chemiluminescent technique under a variety of conditions set up to mimic anoxic insult, including conditions of low pH (6.2) and the presence of lactate plus pyruvate as substrate. Lactate plus pyruvate as substrate consistently gave higher respiration rates than glucose alone, but with either substrate (glucose or lactate plus pyruvate) the omission of Ca2+ caused an increase in respiration whereas a low pH caused a decreased respiration. Acetylcholine release under control conditions (glucose, pH 7.4) was Ca2+-dependent, stimulated by high K+ concentrations, and decreased significantly during anoxia but recovered fully after a period of postanoxic oxygenation. Low pH (6.2) suppressed K+ stimulation of acetylcholine release, and after a period of anoxia at low pH the recovery of acetylcholine release was only partial. With lactate plus pyruvate as substrate, the effects of anoxia and/or low pH on acetylcholine release and its subsequent recovery were exacerbated. Choline release from synaptosomes, however, was not affected by anoxic/ionic conditions in the same way as acetylcholine release. At low pH (6.2) there was a marked reduction in choline release both under aerobic and anoxic conditions. These results suggest that acetylcholine release per se from the nerve is very sensitive to anoxic insult and that the low pH occurring during anoxia may be an important contributory factor.  相似文献   

16.
The exocytotic release of L-glutamate from guinea-pig cerebral cortical synaptosomes can be extensively inhibited by preincubation with botulinum neurotoxin type A at 37 degrees C for 1-2 h. The toxin has no effect on synaptosomal respiratory control, respiratory capacity, ATP synthesis, plasma-membrane 86Rb+ permeability or plasma-membrane potential, does not inhibit the entry of 45Ca2+ into the synaptosome upon depolarization and does not alter the ability of intrasynaptosomal mitochondria to sequester Ca2+. The blockade of Ca2+-dependent glutamate release may be totally reversed by the Ca2+/2 H+-exchange ionophore ionomycin, but not by increasing extracellular Ca2+ concentration. It is suggested (a) that exocytosis is triggered by the penetration of Ca2+ into an intracellular hydrophobic milieu; (b) that this stage is blocked by the toxin and (c) that ionomycin is able to bypass this block and deliver Ca2+ to the exocytotic apparatus.  相似文献   

17.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

18.
The effect of presynaptic neurotoxin from bee and cobra venom--phospholipases A2 on Na+-dependent high affinity [14C]choline transport from the striate body of rat brain into synaptosomes has been studied. It was shown that both phospholipases A2 inhibit the re-uptake of [14C]choline and specifically stimulate the release of [14C]acetylcholine from the synaptosomes. This effect is especially well-pronounced for bee venom phospholipase A2. It was assumed that damages of biochemical processes on the presynaptic membrane result in a blockade of synaptic transmission in nerve-muscle preparations.  相似文献   

19.
The inhibition of high-affinity choline transport by hemicholinium mustard (HCM), an alkylating analogue of hemicholinium-3, was examined in rat brain synaptosomes and guinea pig myenteric plexus. In synaptosomes, 50% high-affinity choline transport inhibition occurs with an HCM concentration of 104 nM (4-min incubation). A 10-min preincubation with 10 microM HCM results in essentially complete (greater than 95%) inactivation that persists after washing. Low-affinity choline transport in synaptosomes is unaffected by HCM inhibition at all concentrations examined (1-50 microM). Time course experiments indicate that the maximum irreversible inhibition (58%) seen after a 1-min preincubation with 500 nM HCM decreases to 46% inhibition after a 15-min preincubation; however, analysis of variance reveals that this difference is not significant. HCM inhibition of acetylcholine release from myenteric plexus-longitudinal muscle preparations persists for at least 2 h after removal of drug from the incubation bath; this inactivation can be prevented by coincubation with a high choline concentration during treatment with the mustard. In contrast, inhibition produced by the parent compound hemicholinium-3 is largely reversed by washing in both preparations examined. The observed potency and selectivity of HCM suggest its usefulness as a covalent probe for high-affinity choline transport.  相似文献   

20.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号