首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pediatric cancer patients with enhanced ataxia telangiectasia-like disorder. Purified human Mre11-W243R retains nuclease and DNA binding activities in vitro. X-ray crystallography of Pyrococcus furiosus Mre11 indicates that an analogous mutation leaves the overall Mre11 three-dimensional structure and nuclease sites intact but disorders surface loops expected to regulate DNA and Rad50 interactions. The equivalent W248R allele in fission yeast allows Mre11 to form an MRN complex that efficiently binds double-strand breaks, activates Tel1/ATM and maintains telomeres; yet, it causes hypersensitivity to ionizing radiation and collapsed replication forks, increased Rad52 foci, defective Chk1 signaling and meiotic failure. W248R differs from other ataxia telangiectasia-like disorder analog alleles by the reduced stability of its interaction with Rad50 in cell lysates. Collective results suggest a separation-of-function mutation that disturbs interactions amongst the MRN subunits and Ctp1 required for DNA end processing in vivo but maintains interactions sufficient for Tel1/ATM checkpoint and telomere maintenance functions.  相似文献   

2.
Mre11 forms the core of the multifunctional Mre11-Rad50-Nbs1 (MRN) complex that detects DNA double-strand breaks (DSBs), activates the ATM checkpoint kinase, and initiates homologous recombination (HR) repair of DSBs. To define the roles of Mre11 in both DNA bridging and nucleolytic processing during initiation of DSB repair, we combined small-angle X-ray scattering (SAXS) and crystal structures of Pyrococcus furiosus Mre11 dimers bound to DNA with mutational analyses of fission yeast Mre11. The Mre11 dimer adopts a four-lobed U-shaped structure that is critical for proper MRN complex assembly and for binding and aligning DNA ends. Further, mutations blocking Mre11 endonuclease activity impair cell survival after DSB induction without compromising MRN complex assembly or Mre11-dependant recruitment of Ctp1, an HR factor, to DSBs. These results show how Mre11 dimerization and nuclease activities initiate repair of DSBs and collapsed replication forks, as well as provide a molecular foundation for understanding cancer-causing Mre11 mutations in ataxia telangiectasia-like disorder (ATLD).  相似文献   

3.
Homologous recombination (HR) repair of programmed meiotic double-strand breaks (DSBs) requires endonucleolytic clipping of Rec12Spo11-oligonucleotides from 5′ DNA ends followed by resection to generate invasive 3′ single-stranded DNA tails. The Mre11-Rad50-Nbs1 (MRN) endonuclease and Ctp1 (CtIP and Sae2 ortholog) are required for both activities in fission yeast but whether they are genetically separable is controversial. Here, we investigate the mitotic DSB repair properties of Ctp1 C-terminal domain (ctp1-CD) mutants that were reported to be specifically clipping deficient. These mutants are sensitive to many clastogens, including those that create DSBs devoid of covalently bound proteins. These sensitivities are suppressed by genetically eliminating Ku nonhomologous end-joining (NHEJ) protein, indicating that Ctp1-dependent clipping by MRN is required for Ku removal from DNA ends. However, this rescue requires Exo1 resection activity, implying that Ctp1-dependent resection by MRN is defective in ctp1-CD mutants. The ctp1-CD mutants tolerate one but not multiple broken replication forks, and they are highly reliant on the Chk1-mediated cell cycle checkpoint arrest, indicating that HR repair is inefficient. We conclude that the C-terminal domain of Ctp1 is required for both efficient clipping and resection of DSBs by MRN and these activities are mechanistically similar.  相似文献   

4.
The multifunctional Mre11-Rad50-Nbs1 (MRN) protein complex recruits ATM/Tel1 checkpoint kinase and CtIP/Ctp1 homologous recombination (HR) repair factor to double-strand breaks (DSBs). HR repair commences with the 5'-to-3' resection of DNA ends, generating 3' single-strand DNA (ssDNA) overhangs that bind Replication Protein A (RPA) complex, followed by Rad51 recombinase. In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) complex is critical for DSB resection, although the enigmatic ssDNA endonuclease activity of Mre11 and the DNA-end processing factor Sae2 (CtIP/Ctp1 ortholog) are largely unnecessary unless the resection activities of Exo1 and Sgs1-Dna2 are also eliminated. Mre11 nuclease activity and Ctp1/CtIP are essential for DSB repair in Schizosaccharomyces pombe and mammals. To investigate DNA end resection in Schizo. pombe, we adapted an assay that directly measures ssDNA formation at a defined DSB. We found that Mre11 and Ctp1 are essential for the efficient initiation of resection, consistent with their equally crucial roles in DSB repair. Exo1 is largely responsible for extended resection up to 3.1 kb from a DSB, with an activity dependent on Rqh1 (Sgs1) DNA helicase having a minor role. Despite its critical function in DSB repair, Mre11 nuclease activity is not required for resection in fission yeast. However, Mre11 nuclease and Ctp1 are required to disassociate the MRN complex and the Ku70-Ku80 nonhomologous end-joining (NHEJ) complex from DSBs, which is required for efficient RPA localization. Eliminating Ku makes Mre11 nuclease activity dispensable for MRN disassociation and RPA localization, while improving repair of a one-ended DSB formed by replication fork collapse. From these data we propose that release of the MRN complex and Ku from DNA ends by Mre11 nuclease activity and Ctp1 is a critical step required to expose ssDNA for RPA localization and ensuing HR repair.  相似文献   

5.
6.
7.
Functional interactions between Sae2 and the Mre11 complex   总被引:1,自引:0,他引:1       下载免费PDF全文
The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 complex (TM) pathway. We demonstrate that SAE2 overexpression blocks the TM pathway, suggesting that Sae2 antagonizes Mre11-complex checkpoint functions. To understand how Sae2 regulates the Mre11 complex, we screened for sae2 alleles that behaved as the null with respect to Mre11-complex checkpoint functions, but left nuclease function intact. Phenotypic characterization of these sae2 alleles suggests that Sae2 functions as a multimer and influences the substrate specificity of the Mre11 nuclease. We show that Sae2 oligomerizes independently of DNA damage and that oligomerization is required for its regulatory influence on the Mre11 nuclease and checkpoint functions.  相似文献   

8.
The human disorder ataxia telangiectasia (AT), which is characterized by genetic instability and neurodegeneration, results from mutation of the ataxia telangiectasia mutated (ATM) kinase. The loss of ATM leads to cell cycle checkpoint deficiencies and other DNA damage signaling defects that do not fully explain all pathologies associated with A-T including neuronal loss. In addressing this enigma, we find here that ATM suppresses DNA double-strand break (DSB) repair by microhomology-mediated end joining (MMEJ). We show that ATM repression of DNA end-degradation is dependent on its kinase activities and that Mre11 is the major nuclease behind increased DNA end-degradation and MMEJ repair in A-T. Assessment of MMEJ by an in vivo reporter assay system reveals decreased levels of MMEJ repair in Mre11-knockdown cells and in cells treated with Mre11-nuclease inhibitor mirin. Structure-based modeling of Mre11 dimer engaging DNA ends suggests the 5′ ends of a bridged DSB are juxtaposed such that DNA unwinding and 3′–5′ exonuclease activities may collaborate to facilitate simultaneous pairing of extended 5′ termini and exonucleolytic degradation of the 3′ ends in MMEJ. Together our results provide an integrated understanding of ATM and Mre11 in MMEJ: ATM has a critical regulatory function in controlling DNA end-stability and error-prone DSB repair and Mre11 nuclease plays a major role in initiating MMEJ in mammalian cells. These functions of ATM and Mre11 could be particularly important in neuronal cells, which are post-mitotic and therefore depend on mechanisms other than homologous recombination between sister chromatids to repair DSBs.Key words: ATM, Mre11, MRN complex, DNA degradation, double-strand break repair, microhomology-mediated end joining, PI-3-kinase-like kinases  相似文献   

9.
Signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. Although the Mre11-Rad50-Nbs1 (MRN) complex is the first sensor of double-strand breaks, its role in double-strand break (DSB) signaling is not fully understood. We report the absence of γ-ray–induced, ATM/ATR-dependent histone H2AX phosphorylation in Arabidopsis thaliana rad50 and mre11 mutants, confirming that the MRN complex is required for H2AX phosphorylation by the ATM and ATR kinases in response to irradiation-induced DSB in Arabidopsis. rad50 and mre11 mutants spontaneously activate a DNA damage response, as shown by the presence of γ-H2AX foci and activation of cell cycle arrest in nonirradiated plants. This response is ATR dependent as shown both by the absence of these spontaneous foci and by the wild-type mitotic indices of double rad50 atr and mre11 atr plants. EdU S-phase labeling and fluorescence in situ hybridization analysis using specific subtelomeric probes point to a replicative S-phase origin of this chromosome damage in the double mutants and not to telomere destabilization. Thus, the data presented here show the exclusive involvement of ATR in DNA damage signaling in MRN mutants and provide evidence for a role for ATR in the avoidance of S-phase DNA damage.  相似文献   

10.
The Mre11/Rad50/Nbs1 complex (MRN) plays an essential role in the S-phase checkpoint. Cells derived from patients with Nijmegen breakage syndrome and ataxia telangiectasia-like disorder undergo radioresistant DNA synthesis (RDS), failing to suppress DNA replication in response to ionizing radiation (IR). How MRN affects DNA replication to control the S-phase checkpoint, however, remains unclear. We demonstrate that MRN directly interacts with replication protein A (RPA) in unperturbed cells and that the interaction is regulated by cyclin-dependent kinases. We also show that this interaction is needed for MRN to correctly localize to replication centers. Abolishing the interaction of Mre11 with RPA leads to pronounced RDS without affecting phosphorylation of Nbs1 or SMC1 following IR. Moreover, MRN is recruited to sites at or adjacent to replication origins by RPA and acts there to inhibit new origin firing upon IR. These studies suggest a direct role of MRN at origin-proximal sites to control DNA replication initiation in response to DNA damage, thereby providing an important mechanism underlying the intra-S-phase checkpoint in mammalian cells.  相似文献   

11.
Meiotic programmed DNA double-strand break (DSB) repair is essential for crossing-over and viable gamete formation and requires removal of Spo11-oligonucleotide complexes from 5′ ends (clipping) and their resection to generate invasive 3′-end single-stranded DNA (resection). Ctp1 (Com1, Sae2, CtIP homolog) acting with the Mre11-Rad50-Nbs1 (MRN) complex is required in both steps. We isolated multiple S. pombe ctp1 mutants deficient in clipping but proficient in resection during meiosis. Remarkably, all of the mutations clustered in or near the conserved CxxC or RHR motif in the C-terminal portion. The mutants tested, like ctp1Δ, were clipping-deficient by both genetic and physical assays­. But, unlike ctp1Δ, these mutants were recombination-proficient for Rec12 (Spo11 homolog)-independent break-repair and resection-proficient by physical assay. We conclude that the intracellular Ctp1 C-terminal portion is essential for clipping, while the N-terminal portion is sufficient for DSB end-resection. This conclusion agrees with purified human CtIP resection and endonuclease activities being independent. Our mutants provide intracellular evidence for separable functions of Ctp1. Some mutations truncate Ctp1 in the same region as one of the CtIP mutations linked to the Seckel and Jawad severe developmental syndromes, suggesting that these syndromes are caused by a lack of clipping at DSB ends that require repair.  相似文献   

12.
In response to replicative stress, cells relocate and activate DNA repair and cell cycle arrest proteins such as replication protein A (RPA, a three subunit protein complex required for DNA replication and DNA repair) and the MRN complex (consisting of Mre11, Rad50, and Nbs1; involved in DNA double-strand break repair). There is increasing evidence that both of these complexes play a central role in DNA damage recognition, activation of cell cycle checkpoints, and DNA repair pathways. Here we demonstrate that RPA and the MRN complex co-localize to discrete foci and interact in response to DNA replication fork blockage induced by hydroxyurea (HU) or ultraviolet light (UV). Members of both RPA and the MRN complexes become phosphorylated during S-phase and in response to replication fork blockage. Analysis of RPA and Mre11 in fractionated lysates (cytoplasmic/nucleoplasmic, chromatin-bound, and nuclear matrix fractions) showed increased hyperphosphorylated-RPA and phosphorylated-Mre11 in the chromatin-bound fractions. HU and UV treatment also led to co-localization of hyperphosphorylated RPA and Mre11 to discrete detergent-resistant nuclear foci. An interaction between RPA and Mre11 was demonstrated by co-immunoprecipitation of both protein complexes with anti-Mre11, anti-Rad50, anti-NBS1, or anti-RPA antibodies. Phosphatase treatment with calf intestinal phosphatase or lambda-phosphatase not only de-phosphorylated RPA and Mre11 but also abrogated the ability of RPA and the MRN complex to co-immunoprecipitate. Together, these data demonstrate that RPA and the MRN complex co-localize and interact after HU- or UV-induced replication stress and suggest that protein phosphorylation may play a role in this interaction.  相似文献   

13.
Dpb11 is required for the loading of DNA polymerases α and on to DNA in chromosomal DNA replication and interacts with the DNA damage checkpoint protein Ddc1 in Saccharomyces cerevisiae. The interaction between the homologs of Dpb11 and Ddc1 in human cells and fission yeast is thought to reflect their involvement in the checkpoint response. Here we show that dpb11-1 cells, carrying a mutated Dpb11 that cannot interact with Ddc1, are defective in the repair of methyl methanesulfonate (MMS)-induced DNA damage but not in the DNA damage checkpoint at the permissive temperature. Epistatic analyses suggested that Dpb11 is involved in the Rad51/Rad52-dependent recombination pathway. Ddc1 as well as Dpb11 were required for homologous recombination induced by MMS. Moreover, we found the in vivo association of Dpb11 and Ddc1 with not only the HO-induced double-strand break (DSB) site at MAT locus but also the donor sequence HML during homologous recombination between MAT and HML. Rad51 was required for their association with the HML donor locus, but not with DSB site at the MAT locus. In addition, the association of Dpb11 with the MAT and HML locus after induction of HO-induced DSB was dependent on Ddc1. These results indicate that, besides the involvement in the replication and checkpoint, Dpb11 functions with Ddc1 in the recombination repair process itself.  相似文献   

14.
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.  相似文献   

15.
Lisby M  Barlow JH  Burgess RC  Rothstein R 《Cell》2004,118(6):699-713
DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting and processing DNA ends in conjunction with Sae2 and by RP-A recognizing single-stranded DNA and recruiting additional checkpoint and repair proteins.  相似文献   

16.
Repair of DNA double-strand breaks (DSBs) is critical for cell survival and for maintaining genome stability in eukaryotes. In Schizosaccharomyces pombe, the Mre11-Rad50-Nbs1 (MRN) complex and Ctp1 cooperate to perform the initial steps that process and repair these DNA lesions via homologous recombination (HR). While Ctp1 is recruited to DSBs in an MRN-dependent manner, the specific mechanism of this process remained unclear. We recently found that Ctp1 is phosphorylated on a domain rich in putative Casein kinase 2 (CK2) phosphoacceptor sites that resembles the SDTD repeats of Mdc1. Furthermore, phosphorylation of this motif is required for interaction with the FHA domain of Nbs1 that localizes Ctp1 to DSB sites. Here, we review and discuss these findings, and we present new data that further characterize the cellular consequences of mutating CK2 phosphorylation motifs of Ctp1, including data showing that these sites are critical for meiosis.  相似文献   

17.
The intra-S-phase checkpoint is a signaling pathway that induces slow DNA replication in the presence of DNA damage. In humans, defects in this checkpoint pathway might account for phenotypes seen in autosomal recessive diseases including ataxia telangiectasia-like disorder and Nijmegen breakage syndrome, where MRN complex components, Mre11 and Nbs1, are mutated. Here we provide evidence that the equivalent budding yeast complex, MRX (Mre11/Rad50/Xrs2), is not required for the intra-S-phase checkpoint in response to DNA alkylation damage, but is required in the presence of double-stranded DNA breaks. These data indicate, at least in budding yeast, that alternate pathways enforce replication slowing depending on the particular DNA lesion.  相似文献   

18.
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.  相似文献   

19.
The MRN complex in double-strand break repair and telomere maintenance   总被引:1,自引:0,他引:1  
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.  相似文献   

20.
Mre11/Rad50/Nbs1 complex (MRN) is essential to suppress the generation of double-strand breaks (DSBs) during DNA replication. MRN also plays a role in the response to DSBs created by DNA damage. Hypomorphic mutations in Mre11 (which causes an ataxia-telangiectasia-like disease [ATLD]) and mutations in the ataxia-telangiectasia-mutated (ATM) gene lead to defects in handling damaged DNA and to similar clinical and cellular phenotypes. Using Xenopus egg extracts, we have designed a simple assay to define the biochemistry of Mre11. MRN is required for efficient activation of the DNA damage response induced by DSBs. We isolated a high molecular weight DNA damage signaling complex that includes MRN, damaged DNA molecules, and activated ATM. Complex formation is partially dependent upon Zn2+ and requires an intact Mre11 C-terminal domain that is deleted in some ATLD patients. The ATLD truncation can still perform the role of Mre11 during replication. Our work demonstrates the role of Mre11 in assembling DNA damage signaling centers that are reminiscent of irradiation-induced foci. It also provides a molecular explanation for the similarities between ataxia-telangiectasia (A-T) and ATLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号