共查询到20条相似文献,搜索用时 15 毫秒
1.
半世纪以来,物种概念的定义备受关注,不同研究方向的生物学家提出24种不同或至少有分歧的物种概念,根据其不同的物种概念,物种的界定和物种的数量会出现很大的差异.人们普遍认同:物种是进化分离的微居群谱系,但把谱系分离过程中获得的特征如生殖隔离、可鉴定性、单系统发生等视为鉴定物种次级特征却有不同的声音.该文提出统一的物种概念,把谱系进化分离作为物种界定的唯一而又必要的特征,把谱系分离过程中获得的次级特征作为界定谱系分离的证据.鉴于此,物种概念间的分歧就会化解.其一,物种概念化与物种界定明显分开,不再混淆;其二,谱系的次级特征只与物种界定有关,在某种程度上为谱系分离提供证据;第三,若能把合理解释的任何一个特征作为某物种客观存在的证据,这样更多的特征更能确定谱系分离;最后最重要的是,统一物种概念使我们解放思想,扬弃传统的物种界定标准,探求物种界定的新思路. 相似文献
2.
Frank E. Zachos 《Journal of genetics》2018,97(4):811-815
The species problem, despite decades of heated debates, has not been resolved yet. Recently, two new species concepts have been published, the mitonuclear compatibility species concept and the inclusive species concept. I briefly discuss them, together with a recent attempt at standardizing taxonomic decisions, in the broader framework of what I believe is an inherent limitation of taxonomy—imposing a discrete system on a continuous process (evolution) that leads to fuzzy boundaries in nature. In the light of this, taxonomists, biologists in general and conservationists alike will have to accept the fact that completely nonarbitrary species delimitation is impossible. This has serious ramifications in all disciplines that rely on species, and particularly species counts, as a basic currency for quantitative analyses (ecology, evolutionary biology) and practical decision-making (conservation and environmental policy). 相似文献
3.
Paul R 《Trends in parasitology》2002,18(10):439-40; author reply 440
4.
Species are fundamental units in studies of systematics, biodiversity and ecology, but their delimitation has been relatively neglected methodologically. Species are typically circumscribed based on the presence of fixed (intraspecifically invariant or non-overlapping) diagnostic morphological characters which distinguish them from other species. In this paper, we argue that determining whether diagnostic characters are truly fixed with certainty is generally impossible with finite sample sizes and we show that sample sizes of hundreds or thousands of individuals may be necessary to have a reasonable probability of detecting polymorphisms in diagnostic characters at frequencies approaching zero. Instead, we suggest that using a non-zero frequency cut-off may be a more realistic and practical criterion for character-based species delimitation (for example, allowing polymorphisms in the diagnostic characters at frequencies of 5% or less). Given this argument, we then present a simple statistical method to evaluate whether at least one of a set of apparently diagnostic characters is below the frequency cut-off. This method allows testing of the strength of the evidence for species distinctness and is readily applicable to empirical studies. 相似文献
5.
6.
7.
8.
9.
Concepts of species proposed within the phylogenetic paradigm arecritically reviewed. Most so called phylogenetic species concepts relyheavily on factors immaterial to phylogenetic hypotheses. Thus, theyhave limited empirical content and offer weak bases on which to makedecisions about real problems related to species. Any workable notion ofspecies relies on an explicit character analysis, rather than onabstract properties of lineages, narrative predications and speculationson tokogenetic relationships. Species only exist conjecturally, as thesmallest meaningful units for phylogenetic analysis, as based oncharacter evidence. Such an idea considers species to be conjecturesbased on similarity, that are subsequently subject to testing by theresults of analysis. Species, thus, are units of phylogenetic analysisin the same way as hypotheses of homology are units of comparablesimilarities, i.e. conjectures to be tested by congruence. Althoughmonophyly need not be demonstrated for species-level taxa, hypotheses ofrelationships are the only basis to refute species limits and guidenecessary rearrangements. The factor that leads to recognition ofspecies is similarity in observed traits. The concept of life cycle isintroduced as an important element in the discussion of species, as anefficient way to convey subsidiary notions of sexual dimorphism,polymorphism, polytypy and clusters of diagnosable semaphoronts. Thenotion of exemplars is used to expand the concept ofspecies-as-individual-organisms into a more generally usable concept.Species are therefore proposed for a diagnosable sample of(observed or inferred) life cycles represented by exemplars all of whichare hypothesized to attach to the same node in a cladogram, and whichare not structured into other similarly diagnosable clusters. Thisdefinition is character-based, potentially testable by reference to abranching diagram, and dispenses with reference to ancestor-descendantrelationships or regression into population concepts. It provides aworkable basis on which to proceed with phylogenetic analysis and abasis for that analysis to refute or refine species limits. A protocolis offered for testing hypotheses of species boundaries in cladograms. 相似文献
10.
The diploid Oryza species with C-genome type possesses abundant genes useful for rice improvement and provides parental donors of many tetraploid species with the C-genome (BBCC,CCDD).Despite extensive studies,the phylogenetic relationship among the C-genome species and the taxonomic status of some taxa remain controversial.In this study,we reconstructed the phylogeny of three diploid species with C-genome (Oryza officinalis,O.rhizomatis,and O.eichingeri) based on sequences of 68 nuclear single-copy genes.We obtained a fully resolved phylogenetic tree,clearly indicating the sister relationship of O.officinalis and O.rhizomatis,with O.eichingeri being the more divergent lineage.Incongruent phylogenies of the C-genome species found in previous studies might result from lineage sorting,introgression/hybridization and limited number of genetic markers used.We further applied a recently developed Bayesian species delimitation method to investigate the species status of the Sri Lankan and African O.eichingeri.Analyses of two datasets (68 genes with a single sample,and 10 genes with multiple samples) support the distinct species status of the Sri Lankan and African O.eichingeri.In addition,we evaluated the impact of the number of sampled individuals and loci on species delimitation.Our simulation suggests that sampling multiple individuals is critically important for species delimitation,particularly for closely related species. 相似文献
11.
Species delimitation: new approaches for discovering diversity 总被引:3,自引:0,他引:3
Wiens JJ 《Systematic biology》2007,56(6):875-878
12.
Ronald Fayer 《Experimental parasitology》2010,124(1):90-143
Amphibians, reptiles, birds and mammals serve as hosts for 19 species of Cryptosporidium. All 19 species have been confirmed by morphological, biological, and molecular data. Fish serve as hosts for three additional species, all of which lack supporting molecular data. In addition to the named species, gene sequence data from more than 40 isolates from various vertebrate hosts are reported in the scientific literature or are listed in GenBank. These isolates lack taxonomic status and are referred to as genotypes based on the host of origin. Undoubtedly, some will eventually be recognized as species. For them to receive taxonomic status sufficient morphological, biological, and molecular data are required and names must comply with the rules of the International Code for Zoological Nomenclature (ICZN). Because the ICZN rules may be interpreted differently by persons proposing names, original names might be improperly assigned, original literature might be overlooked, or new scientific methods might be applicable to determining taxonomic status, the names of species and higher taxa are not immutable. The rapidly evolving taxonomic status of Cryptosporidium sp. reflects these considerations. 相似文献
13.
S L Perkins 《Proceedings. Biological sciences / The Royal Society》2000,267(1459):2345-2350
Species of malaria parasite (phylum Apicomplexa: genus Plasmodium) have traditionally been described using the similarity species concept (based primarily on differences in morphological or life-history characteristics). The biological species concept (reproductive isolation) and phylogenetic species concept (based on monophyly) have not been used before in defining species of Plasmodium. Plasmodium azurophilum, described from Anolis lizards in the eastern Caribbean, is actually a two-species cryptic complex. The parasites were studied from eight islands, from Puerto Rico in the north to Grenada in the south. Morphology of the two species is very similar (differences are indistinguishable to the eye), but one infects only erythrocytes and the other only white blood cells. Molecular data for the cytochrome b gene reveal that the two forms are reproductively isolated; distinct haplotypes are present on each island and are never shared between the erythrocyte-infecting and leucocyte-infecting species. Each forms a monophyletic lineage indicating that they diverged before becoming established in the anoles of the eastern Caribbean. This comparison of the similarity, biological and phylogenetic species concepts for malaria parasites reveals the limited value of using only similarity measures in defining protozoan species. 相似文献
14.
It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China. 相似文献
15.
16.
Fujita MK Leaché AD Burbrink FT McGuire JA Moritz C 《Trends in ecology & evolution》2012,27(9):480-488
The statistical rigor of species delimitation has increased dramatically over the past decade. Coalescent theory provides powerful models for population genetic inference, and is now increasingly important in phylogenetics and speciation research. By applying probabilistic models, coalescent-based species delimitation provides clear and objective testing of alternative hypotheses of evolutionary independence. As acquisition of multilocus data becomes increasingly automated, coalescent-based species delimitation will improve the discovery, resolution, consistency, and stability of the taxonomy of species. Along with other tools and data types, coalescent-based species delimitation will play an important role in an integrative taxonomy that emphasizes the identification of species limits and the processes that have promoted lineage diversification. 相似文献
17.
Species are commonly delimited on the basis of gaps in patterns of morphological variation, but there seems to be little recent work on methods to objectively assess such gaps. Here, we introduce a statistical approach that uses measurements of continuous morphological characters and geographic variation in those characters to (i) measure the strength of the evidence for the existence of a gap in morphological variation between two hypothesized species and (ii) examine if a gap in morphological variation between two hypothesized species can be explained by an alternative hypothesis of geographic variation within a species. This approach is based on recent developments in analyses of multivariate normal mixtures, estimates of multivariate tolerance regions, and principal coordinates of neighboring matrices. We demonstrate the application of the approach by examining previously proposed hypotheses of species limits in the plant genus Escallonia. We discuss the main features of the method, including potential limitations, in relation to other approaches that use gaps in morphological variation as a criterion for species delimitation. The method we propose can help strengthen the link between the theory and practice of species delimitation by increasing the transparency and consistency of taxonomic decisions based on morphology, thus contributing to integrative approaches for species delimitation that consider morphological and geographic data on an equal footing with other kinds of information. 相似文献
18.
Maudy Th. Smith G. A. Poot Wilma H. Batenburg-van der Vegte J. P. van der Walt 《Antonie van Leeuwenhoek》1995,68(1):75-87
Species delimitation inLipomyces was attempted by nuclear genome comparison in conjuction with the re-evaluation of 48 physiological characters of 65 strains.High intraspecific (>75%) and low interspecific (<28%) similarity values established thatL. japonicus, L. lipofer andL. tetrasporus are genetically isolated, and also distinct fromL. kononenkoae andL. starkeyi.Ambiguous similarity values were obtained withL. kononenkoae andL. starkeyi. Strains previously assigned toL. kononenkoae constitute two related clusters. While similarity values within each cluster range from 76–99%, representatives of the two clusters reassociate for only 47%. Since these clusters are differentiated by their ecologically relevant maximum growth temperature,L. kononenkoae is subdivided. Strains previously assigned toL. starkeyi resolve into four closely related clusters. While similarity values within each cluster range from 78–100%, representatives of the four clusters reassociate for only 59–69%. Since these four clusters are poorly differentiated, the subdivision ofL. starkeyi does not appear possible without recourse to other criteria.Four unassigned strains constitute a further two clusters. Reassociation within these clusters is of the order of 91–100%, while reassociation between them occurs only at 59%. Reassociation of representatives of these clusters with those of theL. kononenkoae andL. starkeyi complexes is around 40% and 31%, respectively. These two clusters consequently appear to be intermediate betweenL. kononenkoae andL. starkeyi, and will, as such, have to be considered in any delimitation of these two species. A key to the taxa ofLipomyces and related genera of the Lipomycetaceae is given. 相似文献
19.
20.
We describe a software package (SpedeSTEM) that allows researchers to conduct a species delimitation analysis using intraspecific genetic data. Our method operates under the assumption that a priori information regarding group membership is available, for example that samples are drawn from some number of described subspecies, races or distinct morphotypes. SpedeSTEM proceeds by calculating the maximum likelihood species tree from all hierarchical arrangements of the sampled alleles and uses information theory to quantify the model probability of each permutation. SpedeSTEM is tested here against empirical and simulated data; results indicate that evolutionary lineages that diverged as few as 0.5N generations in the past can be validated as distinct using sequence data from little as five loci. This work enables speciation investigations to identify lineages that are evolutionarily distinct and thus have the potential to form new species before these lineages acquire secondary characteristics such as reproductive isolation or morphological differentiation that are commonly used to define species. 相似文献