首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
In thoroughly washed guinea pig fundic gastric mucosal membranes, NaCl markedly potentiates the maximal histamine-stimulated adenylate cyclase activity and increases the concentration of histamine required for half-maximal effect (EC50). The apparent dissociation constants for the antagonists cimetidine and metiamide are only slightly increased in the presence of NaCl. Potassium chloride does not change the histamine EC50 but does increase the maximal histamine-stimulated adenylate cyclase activity. These results suggest that Na and K ions may play an important role in the regulation of histamine-sensitive adenylate cyclase in gastric mucosa. The effect of the Na ion appears to be more specific for histamine H2 receptor agonists than for antagonists.  相似文献   

2.
The H2-antagonist cimetidine is widely employed in biochemical and pharmacological studies of the H2-receptor. These studies include the use of 3H-cimetidine in radioligand binding experiments. Confirming our previous finding as to the unsuitability of this ligand in these types of investigations, we now report data showing the lack of correlation between the displacement of specific 3H-cimetidine binding and histamine stimulated adenylate cyclase activity, and the displacement of specific binding by imidazoles devoid of H2-receptor activity. Results are also presented which question the use of copper ions in 3H-cimetidine binding studies. Our conclusions are discussed in relation to the work carried out by a number of laboratories where 3H-cimetidine is reported to label the H2-receptor.  相似文献   

3.
A variety of neurohumoral agents activate adenylate cyclase in homogenates of rat frontal cortex (norepinephrine, isoproterenol, dopamine, apomorphine, histamine, 4-Me-histamine and prostaglandins E1, E2 and A2). The enzyme in homogenates of isolated cortical neurons is likewise sensitive to norepinephrine, isoproterenol, dopamine, apomorphine, histamine, 2-Me- and 4-Me-histamine, and prostaglandin F. Capillary-enriched fractions from the cortex possess an enzyme that is activated by norepinephrine, isoproterenol and dopamine. Addition of 5′-guanylyl-imidodiphosphate (Gpp(NH)p) to the cortical homogenates and neuronal fractions resulted in enhanced enzyme responses to norepinephrine, isoproterenol, dopamine, 2-Me- and 4-Me-histamine and the prostaglandins E1 and E2. The actions of histamine and apomorphine were not increased by the GTP analog. The sensitivity of the catecholamine-induced adenylate cyclase activation in cortical capillaries was augmented by Gpp(NH)p. Thus various cellular types within the cerebral cortex may possess different receptor characteristics with respect to stimulation of adenylate cyclase by neurohormones.  相似文献   

4.
Norepinephrine, histamine, adenosine, glutamate, and depolarizing agents elicit accumulations of radioactive cyclic AMP from adenine-labeled nucleotides in particulate fractions from Krebs-Ringer homogenates of guinea pig cerebral cortex. The particulate fractions contain sac-like entities, which apparently are associated with a significant portion of the membranal adenylate cyclase. Particulate fractions from sucrose homogenates are a less effective source of such responsive entities. Activation of the adenine-labeled cyclic AMP-generating systems by norepinephrine is by means of alpha-adrenergic receptors, while activation by histamine is through H1- and H2-histaminergic receptors. Adenosine responses are potentiated by the amines and are antagonized by alkylxanthines. Glutamate and depolarizing agents appear to elicit accumulations of cyclic AMP via "release" of endogenous adenosine. It is proposed, based on the virtual absence of an alpha-adrenergic or H1-histaminergic response in the presence of a combination of potent adenosine and H2-histaminergic antagonists, that alpha-adrenergic and H1-histaminergic receptor mechanisms do not activate adenylate cyclase directly in brain slices or Krebs-Ringer particulate fractions, but merely facilitate activation by beta-adrenergic, H2-histaminergic, or adenosine receptors.  相似文献   

5.
The effect of histamine, 1,4-methylhistamine and ethanol on cyclic AMP levels and protein kinase activation was measured in tissue strips from the fundic region of guinea pig gastric mucosa. Histamine induced a significant elevation of tissue cyclic AMP levels and also in situ activation of the protein kinase. 1,4-methylhistamine, an inactive analog of histamine, and ethanol had no effect on these two parameters. Results suggest that protein kinase activation is involved in the cyclic AMP-mediated action of histamine on the gastric fundic mucosa.  相似文献   

6.
Histamine activated adenylate cyclase in pig skin (epidermal) slices, resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of cyclic AMP-phosphodiesterase inhibitors (theophylline, papaverine). A specific H2 receptor inhibitor (metiamide) inhibited the effect of histamine completely, while other antihistamines (diphenhydramine, acetophenazine, perphenazine, fluphenazine, promethazine) inhibited the effect of histamine to various lesser degrees. It has been shown that both epinephrine and prostaglandin E stimulate epidermal adenylate cyclase. Our data using specific blocking agents indicate that histamine, epinephrine and prostaglandin E2 act independently on the epidermal adenylate cyclase system.  相似文献   

7.
Adenylate cyclase activity was assayed in rat striatal homogenates. Dopamine and, to a lesser extent, 1-norepinephrine added in vitro produced a dose-dependent enhancement of adenylate cyclase activity. Fluphenazine did not alter basal enzyme activity, but prevented both dopamine- and 1-norepinephrine-elicited increases. No significant changes in basal- or dopamine-stimulated adenylate cyclase activity were found in homogenates from rats pretreated with chlorpromazine for 21 days or reserpine for 2 days. It is concluded that the behavioral and neurophysiologic postsynaptic supersensitivities that follow similar pretreatments are not mediated by alterations in the sensitivity of striatal adenylate cyclase to dopamine.  相似文献   

8.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

9.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

10.
A chemically synthesized form of leukotriene E4 (LTE4) has been studied for its ability to induce contractions in isolated guinea pig ilea, to induce vascular permeability changes in rat skin when injected intradermally, and to induce bronchoconstriction in guinea pigs after intravenous injection. The synthetic compound induced a contraction in the guinea pig ileum which was slower in developing than that induced by histamine but faster in developing than that induced by a crude preparation of SRS-A isolated from guinea pig lung. The compound was 70-fold more active than histamine on the guinea pig ileum (EC50 of 5 × 10?9 and 3.5 × 10?7 M, respectively). FPL 55712, a known SRS-A antagonist, exhibited the same potency in blocking the contractions elicited by the synthetic material as it did in blocking contractions produced by guinea pig SRS-A generated biologically (IC50 of 3.5 × 10?8 M). The synthetic LTE4 induced a dose dependent increase in vascular permeability in the rat skin which was antagonized by the intravenous injection of FPL 55712 (ID50 of 1.2 mg/kg). The synthetic material was also a potent bronchoconstrictor in the guinea pig when injected intravenously. The bronchoconstriction, too, was antagonized by FPL 55712 when injected intravenously (ID50 of 0.2 mg/kg). In both the rat and guinea pig, FPL 55712 exhibited a short duration of action in vivo. The in vivo model systems discussed in this study, utilizing the synthetic form of LTE4 should be useful in the future evaluation of other SRS-A antagonists.  相似文献   

11.
The catalytic component of adenylate cyclase and [3H]dopamine binding protein were solubilized with 2% Lubrol PX in the presence of NaF from the synaptic membranes of canine caudate nucleus and were separated into distinct fractions by gel exclusion chromatography on a Sephadex G-200 column. The dissociated adenylate cyclase was no longer responsive to dopamine but was considerably stimulated by 10 mm NaF. Dissociated [3H]-dopamine binding protein possessed the apparent dissociation constant of 3.2 μm for dopamine, almost identical to that of the particulate preparations. The affinities of [3H]-dopamine binding protein to catecholamines and neuroleptics were also very similar to those of particulate preparations. After the adenylate cyclase and [3H]dopamine binding protein were preincubated together at 4 °C for 30 min, the cyclase activity displayed a dose-dependent increase by dopamine with the Ka of 1.6 μm, the concentration of dopamine to stimulate half-maximally. Stimulation of the reconstituted adenylate cyclase by dopamine was maximally 2.7-fold and was strongly inhibited by neuroleptics such as chlorpromazine and haloperidol. These results suggest that [3H]dopamine binding protein is identical to the regulatory subunit of dopamine-sensitive adenylate cyclase in the synaptic membranes of canine caudate nucleus.  相似文献   

12.
1-Methylisoguanosine, a marine natural product with potent muscle-relaxant and cardiovascular actions in vivo, interacts directly with adenosine receptors in guinea-pig brain slices to stimulate adenylate cyclase. These effects are blocked by theophylline. Comparison of the in vivo pharmacological activity of a number of synthetic analogues of 1-methylisoguanosine with in vitro adenylate cyclase-stimulating ability indicates that compounds lacking the latter biochemical activity have little muscle-relaxant activity. Adenosine is a potent stimulator of adenylate cyclase but is inactive in vivo because of rapid removal from the extracellular environment by uptake and deamination. Unlike adenosine, 1-methylisoguanosine is resistant to deamination and is only poorly accumulated by brain tissue slices or homogenates containing synaptosomes. Since it is an extremely weak competitive inhibitor of adenosine deaminase and only a weak inhibitor of adenosine uptake, it is unlikely to act by potentiating the effects of adenosine itself at extracellular receptors. Thus, the pharmacological effects of 1-methylisoguanosine are apparently due to its actions as a long-lasting adenosine analogue.  相似文献   

13.
S S Yen  W Kreutner 《Life sciences》1979,25(6):507-514
The presence and function of histamine H2-receptors in guinea pig lung was studied using lung strips as an in vitro model of peripheral airway smooth muscle. The lung strips were incubated in Krebs-Henseleit solution in the absence or presence of specific antagonists for 20 min prior to the addition of either histamine or dimaprit added in a half-log cumulative fashion. Changes in isometric tension were recorded. Histamine at low concentrations (10?7?10?6M) caused a slight relaxation which was potentiated by the histamine H1-antagonist chlorpheniramine (10?7 or 10?6M) and abolished by the histamine H2-antagonist metiamide (10?4M). Higher concentrations of histamine produced a dose-related contraction which was antagonized competitively by chlorpheniramine or potentiated by metiamide. Dimaprit, a histamine H2-agonist, produced only a relaxant response over the concentration range of 10?7 ? 10?3M. This relaxation was reduced by metiamide but not by the beta adrenergic antagonist propranolol. These results indicate the presence of both histamine H2 and H1-receptors in guinea pig peripheral airway smooth muscle which mediate the relaxant and contractile effects of histamine respectively.  相似文献   

14.
Guanosine 5′-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 μM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3′, 5′-monophosphate and 5′-guanylylimidodiphosphate (GMP · PNP) also stimulated mammalian adenylate cyclase activity. GMP · PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5′-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The β-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and β-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP. PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to β-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2′-monophosphate, guanosine 3′-monophosphate or guanosine 2′,5′-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.  相似文献   

15.
Stereosecific synthesis of trans-hydrindanone 2a, a bicyclic analog of prostaglandin E1, via the trans-hydrindane β-keto ester 8, is described. When tested in the guinea pig, 2a exhibited no effects on blood pressure and no broncho-constriction or dilation activity. Additionally, 2a failed to inhibit both ADP and collagen induced blood platelet aggregation.  相似文献   

16.
A C-11 substituted PGE2 analog, DHET-PGE2 [?-11-deoxy-11α-(2-hydroxyethylthio)-PGE2 methyl ester], was demonstrated to exert potent bronchodilator activity in three in vivo models of augmented airway resistance: (1) acute bronchospasms, induced by 5-hydroxytryptamine, histamine and acetylcholine in the anesthetized guinea pig, (2) acute bronchospasm, induced by pilocarpine, in the anesthetized dog, and (3) chronic bronchospasm, induced by SO2 exposure, in the unanesthetized dog. In acute and 30-day toxicological studies in the dog, no cardiovascular, respiratory or gastrointestinal side effects were observed at aerosol doses at least 1,000 times those required for efficacy. In vitro, DHET-PGE2 effectively relaxed isolated preparations of dog bronchus that had been contracted with carbachol. In clinical studies, human asthmatics and bronchitics responded consistently to β-agonist bronchodilators but variably to DHET-PGE2. Overall, increases in pulmonary resistance or decreases in FEV1 were observed with DHET-PGE2. Subsequent evaluation in isolated carbachol-contracted human bronchus revealed that, in contrast to the bronchodilator activity of PGE1 and β-agonists, DHET-PGE2 and PGE2 induced contraction. Considered along with results from previous clinical studies on other PGs, these data underscore the difficulties in making extrapolations on this class of compounds from animal models to humans and suggest that human bronchial tissue may provide the only appropriate preclinical test system for predicting the clinical efficacy of PG bronchodilators.  相似文献   

17.
Administration of leukotriene B4 (LTB4) to anesthetized spontaneously breathing guinea pigs either by the intravenous or aerosol route produced pronounced changes in pulmonary resistance and dynamic compliance. The effects were short lived and were completely abolished by pretreatment of animals with the cyclooxygenase inhibitor indomethacin. Histological examination of lungs following aerosol administration of LTB4 showed a pronounced neutrophil infiltration. These results confirm previous in vitro studies in which LTB4 was shown to produce contractions on guinea pig parenchymal strips indirectly by releasing thromboxane A2.  相似文献   

18.
Certain biochemical characteristics of an adenylate cyclase that is activated by low concentrations of histamine (Ka, 8 μm) and that is present in cell-free preparations from the dorsal hippocampus of guinea pig brain have been studied. Histamine increased the maximal reaction velocity of adenylate cyclase without altering the Km (0.18 mm) for its substrate, MgATP. Increasing concentrations of free Mg2+ stimulated enzymatic activity; the kinetic properties of this activation by Mg2+ suggest the existence of a Mg2+ allosteric site on the enzyme. Histamine increased the affinity of this apparent site for free Mg2+. Free ATP was a competitive inhibitor with respect to the MgATP substrate. The apparent potency of free ATP as an inhibitor increased in the presence of histamine. In the presence of Mg2+, low concentrations of Ca2+ markedly inhibited adenylate cyclase activity; half-maximal inhibition of both basal and histamine-stimulated enzyme activity occurred at 40 μm Ca2+. Other divalent cations, including Zn2+, Cu2+, and Cd2+, were also inhibitory. Of the divalent cations tested, only Co2+ and Mn2+ could replace Mg2+ in supporting histamine-stimulated adenylate cyclase activity. The nucleoside triphosphates GTP and ITP increased basal adenylate cyclase activity and markedly potentiated the stimulation by histamine. Preincubation of adenylate cyclase with 5′-guanylylimidodiphosphate dramatically increased enzyme activity; in this activated state, the adenylate cyclase was relatively refractory to further stimulation by histamine or F?. The subcellular distribution of histamine-sensitive adenylate cyclase activity was studied in subfractions from guinea pig cerebral cortex. The highest total and specific activities were observed in those fractions enriched in nerve endings, while adenylate cyclase activity was not detectable in the brain cytosol fraction. A possible physiological role for this histamine-sensitive adenylate cyclase in neuronal function is discussed.  相似文献   

19.
—A variety of histamine analogs elicit accumulations of radioactive cyclic AMP in guinea-pig neocortical and hippocampal slices labelled during a prior incubation with [14C]adenine. The H1agonist, 2-aminoethylthiazole, elicits accumulation of cyclic AMP in neocortical and hippocampal slices both in the absence or presence of adenosine. The presence of adenosine increases the maximum response to 2-aminoethylthiazole and decreases the EC50 by nearly 10-fold. In the absence of adenosine the effects of 2-aminoethylthiazole are antagonized in hippocampal slices by both d-brompheniramine and metiamide, while in the presence of adenosine only d-brompheniramine is an effective antagonist. The H2-agonist, 4-methylhistamine, elicits a somewhat smaller accumulation of cyclic AMP than does 2-aminoethylthiazole in both cortical and hippocampal slices. In the presence of adenosine the response to 4-methylhistamine is enhanced, but is markedly lower than that seen with the combination of adenosine and 2-aminoethylthiazole. The dose-response relationship for 4-methylhistamine in the presence of adenosine appears in hippocampal slices to consist of two components. The response to 4-methylhistamine in the absence of adenosine is blocked by metiamide, while in the presence of adenosine the response is partially blocked by both H1 and H2-antagonists. The accumulation of cyclic AMP elicited by histamine is greatly increased by adenosine but the EC50 is not significantly decreased. The results suggest that (i) both H1- and H2-receptors regulate cyclic AMP-formation in the central nervous system, (ii) the synergism between adenosine and histamine is mediated primarily by interaction with H1-receptors and (iii) that adenosine greatly increases the affinity of the H1-receptors for both H1 and H2-agonists without affecting its affinity for histamine.  相似文献   

20.
Binding of (?)-[3H]dihydroalprenolol to the synaptic membrane fractions of canine cerebellum was rapid and reversible with rate constants of 1.62 × 108m?1 min?1 and 0.189 min?1 for the forward and reverse reactions, respectively. The binding was of high affinity and saturable with an equilibrium dissociation constant (KD) of 5 to 7 nm. Bound (?)-[3H]-dihydroalprenolol was displaceable with β-adrenergic agonists and antagonists, but not with a variety of other neuroactive substances such as acetylcholine, histamine, serotonin, dopamine, tyramine, (?)-phenylephrine, γ-aminobutyric acid, glycine, and glutamic acid. Adenylate cyclase of the membranes was stimulated at most three times by β-adrenergic agonists, but not significantly by the other neuroactive substances. Guanine nucleotides such as GTP and guanyl-5′-yl imidodiphosphate (Gpp(NH)p) were strictly required for β-adrenergic stimulation of adenylate cyclase with their optimum concentrations of 50 μm, although the nucleotides alone elevated virtually no basal activity. The affinities of β-adrenergic ligands including some stereoisomers for (?)-[3H]dihydroalprenolol binding sites were very similar to those for adenylate cyclase in the presence of GTP. Binding of β-adrenergic agonists to the membranes exhibited an apparent negative cooperativity as determined by displacement of (?)-[3H]dihydroalprenolol in the absence of purine nucleotides. This negative cooperativity was entirely abolished by addition of either GTP or Gpp(NH)p at 50 μm. Both (?)-isoproterenol-stimulated adenylate cyclase activity and binding of (?)-[3H]dihydroalprenolol were not affected by β1-selective antagonists, (±)-atenolol, and (±)-practolol, at concentrations which completely inhibit peripheral β1-responses in vitro, whereas β2-selective agonists such as YM-08316 (BD-40A) and (±)-salbutamol not only stimulated adenylate cyclase but also competitively inhibited binding of (?)-[3H]dihydroalprenolol. These results indicate that canine cerebellar adenylate cyclase may be coupled specifically with β2-adrenergic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号