首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurotransmitter storage vesicles were isolated from rat brain by differential centrifugation and the uptake of (?) 3H-norepinephrine was determined in vitro. Uptake showed a marked temperature dependence, an absolute requirement for ATP-Mg2+, and was inhibited in vitro by reserpine. Uptake was linear for 5 min at 30°, but not at 37°. The uptake was saturable and displayed a single Km value of 4 × 10?7 M. Other phenylamines and indoleamines displayed competitive inhibition of norepinephrine uptake; the affinities followed the rank order: reserpine>harmaline>serotonin>epinephrine> dopamine>norepinephrine>metaraminol. Uptake was reduced in vesicles isolated from rats treated intracisternally with 6-hydroxydopamine but not from rats treated with 5,6-dihydroxytryptamine, suggesting that most of the uptake occurs in catecholaminergic, and not serotonergic, vesicles. This method provides a ready characterization of pharmacologic effects on rat brain storage vesicle properties, as demonstrated by the prompt and complete inhibition of uptake in vitro after administration of reserpine in vivo.  相似文献   

2.
Plasma membrane vesicles, isolated from ejaculated ram sperm, were found to contain Ca2+-activated Mg2+-ATPase and Ca2+ transport activities. Membrane vesicles that were exposed to oxalate as a Ca2+-trapping agent accumulated Ca2+ in the presence of Mg2+ and ATP. The Vmax for Ca2+ uptake was 33 nmol/mg protein per h, and the Km values for Ca2+ and ATP were 2.5 μM and 45 μM, respectively. 1 μM of the Ca2+ ionophore A23187, added initially, completely inhibited net Ca2+ uptake and, if added later, caused the release of Ca2+ previously accumulated. A Ca2+-activated ATPase was present in the same membrane vesicles which had a Vmax of 1.5 μmol/mg protein per h at free Ca2+ concentration of 10 μM. This Ca2+-ATPase had Km values of 4.5 μM and 110 μM for Ca2+ and ATP, respectively. This kinetic parameter was similar to that observed for uptake of Ca2+ by the vesicles. The Ca2+-ATPase activity was insensitive to ouabain. Both Ca2+ transport and Ca2+-ATPase activity were inhibited by the flavonoid quercetin. Thus, ram spermatozoa plasma membranes have both a Ca2+ transport activity and a Ca2+-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivity to quercetin.  相似文献   

3.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

4.
Pigeon erythrocyte membrane was solubilized partially, but relatively unselectively by Triton X-100. Vesicles were reconstituted from mixtures of Triton-solubilized membrane and lipid (phosphatidylcholine plus phosphatidylethanolamine plus cholesterol) by addition of bovine high-density lipoprotein. This efficiently removed the Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electropherograms of reconstituted vesicles showed band patterns resembling those of the original membrane. The reconstituted vesicles showed ATP-dependent active accumulation of 45Ca2+. ATP-dependent 45Ca2+ uptake by the reconstituted vesicles resembled the corresponding activity of the original membrane vesicles; in both preparations the Ca2+ uptake rate depended on the square of the Ca2+ concentration and had similar [Ca2+]12 values, 0.16 μM and 0.18 μM, respectively.  相似文献   

5.
Compared to (+)-pseudococaine, (?)-cocaine was 20 times more potent in inhibiting uptake of 3H-norepinephrine (3HNE) by cortical synaptosomes and 66 times more potent with respect to 3H-dopamine (3HDA) uptake by striatal synaptosomes. Although the tropacocaine isomers were equipotent as inhibitors of 3HNE uptake in the cortex, tropacocaine was 3.9 times more potent as an inhibitor of 3HDa uptake in the striatum than pseudotropococaine. A major known cocaine metabolite, benzoylecgonine failed to inhibit the accumulation of 3HNE and 3HDA by synaptosomes from the cortex and striatum, respectively. The implications of these findings in relation to the motor stimulation seen with (?)-cocaine, (+)-pseudococaine and benzoylecgonine in rats are discussed.  相似文献   

6.
The MgATP-stimulated accumulation of (-)-3H-nor- epinephrine (NE) by rat brain neuronal storage vesicles has been characterized in a new medium based upon polyacrylic acid (avg. MW 5,000). The medium allows careful regulation of K+ concentration (140 mM), has a large buffer capacity, and is non-permeant to membranes. Light scattering measurements have confirmed the osmotic stability of vesicles suspended in this medium. Vesicular accumulation of (-)-3 H-NE (Km 1 × 10?6 M) in this system (37°) was examined under saturating (10?5 M) and non-saturating (2 × 10?7 M) concentrations of NE. At 10?5 M NE, uptake saturated at 5 min and remained stable for periods up to one hour, with maximal uptake levels (pmol/mg protein) of 15.7±0.30 (37°), 3.0±0.49 (0°), 4.4±0.22 (reserpine pretreated invivo) and 6.0±0.79 (without MgATP). At 2×10?7 M NE uptake was biphasic with maximal uptake levels (pmol/mg protein) of 4.04±0.14 (37°), 0.19±0.01 (0°), 0.95±0.01 (reserpine) and 0.83±0.08 (without MgATP). Vesicle preparations refrigerated in this medium for 24 hrs displayed properties quite similar to those measured acutely (NE = 2.2x10?7 M).  相似文献   

7.
Tyrosine uptake by rat synaptosomes was maximal after 5–10 min of incubation and at 30°C; uptake was inhibited by dinitrophenol (10?4 M) or ATP (10?3 M) and increased by reducing sodium concentrations or increasing calcium or potassium. The best model for uptake is a two-carrier system, in which one carrier shows high-affinity uptake and the other may be diffusional. Both uptake mechanisms are more concentrated in catecholamine-rich brain areas, and are inhibited in vitro by other large, neutral amino acids. At physiologic amino acid brain concentrations, each system probably carries about half of the tyrosine into the nerve terminal.  相似文献   

8.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

9.
The role of microfilaments and microtubules on bile salt transport was studied by investigating the influence of a microfilament and a microtubule inhibitor, cytochalasin B and colchicine, respectively, on taurocholate uptake by isolated hepatocytes in vitro. Hepatocytes were prepared by the enzyme perfusion method and [14C]taurocholate uptake velocity was determined by a filtration assay. Taurocholate uptake obeyed Michaelis-Menten kinetics, maximal uptake velocity and apparent half-saturation constants averaging 0.87 ± SD 0.05 nmol · s?1 · 10?6cells and 10.9 ± 1.8 μM, respectively. Cytochalasin B (4.2–420 μM) inhibited taurocholate uptake in a competitive fashion; Ki being 33 ± 7 μM. At concentrations above 100 μM the compound decreased 36Cl membrane potential and intracellular K+ concentration. Other parameters of cell viability were not affected by cytochalasin B. Colchicine (0.1–1.0 mM), by contrast, inhibited taurocholate uptake non-competitively, Ki being 0.47 ± 0.07 mM. The inhibition brought about by colchicine was considerably smaller than that induced by cytochalasin B. None of the parameters of cell viability tested was affected by colchicine. These results suggest that microfilaments may be involved in the carrier-mediated hepatocellular transport of bile salts. This could, at least in part, account for cytochalasin B-induced cholestasis. The contribution of the microtubular system, if any, is less important quantitatively. The mechanisms whereby these two components of the cytoskeleton partake in bile salt transport remain to be elucidated.  相似文献   

10.
The effect of catecholamines on somatostatin release by median eminence (ME) fragments was evaluated using an invitro incubation system. Adult male rats were used as tissue donors. Somatostatin release was readily detected during short-term incubations (10 and 30 minutes). Dopamine (DA) significantly stimulated somatostatin release during a 30 minute incubation period at the two doses tested (0.6 and 6 μM). Under similar conditions, norepinephrine (NE) stimulated somatostatin release only at the 6 μM dose. Using a shorter incubation period (10 min) and a 6 μM dose, only DA stimulated somatostatin release. The effects of DA and NE were specifically blocked by the invitro addition of pimozide or phentolamine, respectively, suggesting that dopaminergic and noradrenergic receptors may be present in the somatostatinergic terminals of the ME. The results indicate that both DA and NE may be involved in the regulation of somatostatin secretion.  相似文献   

11.
Neural cells from fetal rat brain were grown in tissue culture in the absence of serum and maintained for 4–5 weeks without medium renewal. Over 80% of the embryonic cells in the culture had a neuronal appearance and formed intercellular synaptic connections. When mature, a definite population of the neuronal cells accumulated 3H-dopamine in a sodium-dependent, benztropine inhibited process. The mature cells were also able to release 3H-dopamine in a potassium evoked, calcium-dependent process, with half maximal dopamine release achieved at a Ca2+ concentration of 120μM. In the maturing cells the capacity for potassium evoked, calcium-dependent dopamine release increased from an undetectable level in the first three days to a plateau level after 10–11 days in vitro. The fully expressed release capacity (20–30% of the neurotransmitter retained in the cells) was maintained thereafter. These results demonstrate that primary brain neurons develop a functional neurosecretion apparatus in a chemically defined medium in the absence of animal serum. This extends the utility of primary cultures of brain neurons for developmental structural and biochemical studies of neurotransmission.  相似文献   

12.
Cholinergic synaptic vesicles isolated from the electric organ of Torpedo californica are confirmed to exhibit energy-linked uptake of [3H] acetylcholine. [3H]Acetylcholine is concentrated in the vesicles by a factor of 10–14 in the presence of MgATP and bicarbonate. This active uptake can be completely inhibited by the mitochondrial uncouplers 3-t-butyl-5-Cl-2′-Cl-4′-nitro-salicylanilide (S-13) and p-nitrophenol. The vesicle-associated ATPase is stimulated by S-13 in the same concentration range which inhibits [3H]acetylcholine active uptake. The ATPase also is stimulated by valinomycin. Both S-13 and valinomycin effects are independent of exogenous Ca2+. Thus, a proton gradient generated by the vesicle-associated ATPase appears to be coupled to active [3H]acetylcholine uptake.  相似文献   

13.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

14.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

15.
O2 uptake in spinach thylakoids was composed of ferredoxin-dependent and -independent components. The ferredoxin-independent component was largely 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) insensitive (60%). Light-dependent O2 uptake was stimulated 7-fold by 70 μM ferredoxin and both uptake and evolution (with O2 as the only electron acceptor) responded almost linearly to ferredoxin up to 40 μM. NADP+ reduction, however, was saturated by less than 20 μM ferredoxin. The affinity of O2 uptake for for O2 was highly dependent on ferredoxin concentration, with K12(O2) of less than 20 μM at 2 μM ferredoxin but greater than 60 μM O2 with 25 μM ferredoxin. O2 uptake could be suppressed up to 80% with saturating NADP+ and it approximated a competitive inhibitor of O2 uptake with a Ki of 8–15 μM. Electron transport in these thylakoids supported high rates of photophosphorylation with NADP+ (600 μmol ATP/mg Chl per h) or O2 (280 μmol/mg Chl per h) as electron acceptors, with ATP2e ratios of 1.15–1.55. Variation in ATP2e ratios with ferredoxin concentration and effects of antimycin A indicate that cyclic electron flow may also be occurring in this thylakoid system. Results are discussed with regard to photoreduction of O2 as a potential source of ATP in vivo.  相似文献   

16.
An ATP-dependent mechanism for Ca2+ uptake in human platelet membrane fractions has been identified and characterized. Ca2+ uptake into a membrane fraction is shown to be stimulated at low concentrations of ATP and Ca2+ and to require magnesium ions. Initial rate kinetics, using Eadie-Scatchard analysis, indicated a single class of calcium uptake sites in the presence of ATP, with a Kd for free [Ca2+] of 0.145 μM. Ca2+ uptake in the presence of several ATP concentrations demonstrates that ATP binds to at least two sites, representing high and low affinities of 3.21 and 80.1 μM, respectively. The neuroleptic drug fluphenazine inhibited ATP-stimulated calcium uptake (IC50 = 55 μM), suggesting this ATP-dependent Ca2+ uptake system may provide a useful ion-transport model with which to study neuroleptic therapy in humans.  相似文献   

17.
Tyrosine uptake by membrane vesicles derived from rat brain has been investigated. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside). The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The process is stimulated by a membrane potential (negative inside) as demonstrated by the effect of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tyrosine is accumulated by two systems with different affinities. Tyrosine uptake is inhibited by the presence of phenylalanine and tryptophan.  相似文献   

18.
Chenooxazoline3 (50–100 μM) inhibited (>50%) both 7α and 7β-dehydroxylase activities in whole cells and cell extracts of Eubacterium sp. V.P.I. 12708. Chenooxazoline (>50 μM) and methylchenooxazoline (>25 μM) but not lithooxazoline (≤100 μM) inhibited growing cultures of Eubacterium sp. V.P.I. 12708. Chenooxazoline (100 μM) also inhibited the growth of certain members of the genera Eubacterium, Clostridium, Bacteroides and Staphylococcus but not Pseudomonas, Escherichia, Salmonella or the eucaryotic microorganism, Saccharomyces cerevisiae (_< 400 μM).  相似文献   

19.
The properties of carnitine transport were studied in rat kidney cortex slices. Tissue: medium concentration gradients of 7.9 for L-[methyl-14C]carnitine were attained after 60-min incubation at 37°C in 40 μM substrate. L- and D-carnitine uptake showed saturability. The concentration curves appeared to consist of (1) a high-affinity component, and (2) a lower affinity site. When corrected for the latter components, the estimated Km for L-carnitine was 90 μM and V = 22nmol/min per ml intracellular fluid; for D-carnitine, Km = 166 μM and V = 15 nmol/min per ml intracellular fluid. The system was stereospecific for L-carnitine. The uptake of L-carnitine was inhibited by (1) D-carnitine, γ-butyrobetaine, and (2) acetyl-L-carnitine. γ-Butyrobetaine and acetyl-L-carnitine were competitive inhibitors of L-carnitine uptake. Carnitine transport was not significantly reduced by choline, betaine, lysine or γ-aminobutyric acid. Carnitine uptake was inhibited by 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, N2 atmosphere, KCN, N-ethylmaleimide, low temperature (4°C) and ouabain. Complete replacement of Na+ in the medium by Li+ reduced L- and D-carnitine uptake by 75 and 60%, respectively. Complete replacement of K+ or Ca2+ in the medium also significantly reduces carnitine uptake. Two roles for the carnitine transport system in kidney are proposed: (1) a renal tubule reabsorption system for the steady-state maintenance of plasma carnitine; and (2) maintenance of normal carnitine levels in kidney cells, which is required for fatty acid oxidation.  相似文献   

20.
T C Westfall 《Life sciences》1974,14(9):1641-1652
The effect of acetylcholine (ACh) on the release of 3H-norepinephrine (NE) from the cerebellum and 3H-dopamine (DA) from the striatum following the administration of potassium chloride or electrical field stimulation was studied in superfused brain slices. ACh in conc. of 10?6 and 10?5M significantly inhibited the release of 3H-NE from cerebellar slices and 3H-DA from striatal slices following 2 min infusion of 50mM potassium chloride. In addition ACh produced a dose-dependent inhibition of the release of 3H-DA from striatal slices following electrical stimulation. The results obtained in the present study are quite consistent with the concept that a muscarinic inhibitory mechanism may be operative on noradrenergic and dopaminergic neurons in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号