首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHOLINE AND ACETYLCHOLINE IN RATS: EFFECT OF DIETARY CHOLINE   总被引:8,自引:7,他引:1  
Abstract– The concentration of free choline in peripheral tissues (duodenum, heart, kidney, liver, stomach and plasma) of rats was found to be related to the amount of free choline in the diet. Under steady-state conditions, the concentration of free choline in plasma varied from a minimum of approx 6 nmol/ml (in rats fed a choline-deficient diet) to a maximum value not exceeding 21 nmol/ml. The concentration of plasma choline was elevated above 21 nmol/ml for a short time after parenteral administration of choline chloride or one of its precursors (CDP choline or phosphorylcholine), but was not affected by stress, endocrine manipulations, drug treatments or the time of day when rats were killed. The metabolism of intravenously administered [methyl-3H] choline was accelerated in peripheral tissues (except plasma) of choline-deficient rats, indicating that free choline is not preserved during choline deficiency by a reduction in its rate of turnover. Furthermore, the decrease in concentration of plasma choline that occurred in rats fed a choline-deficient diet was prevented by addition of deanol (dimethylaminoethanol) to the diet. These results indicate that free choline in peripheral tissues of rats is derived from both free choline in the diet, and from precursors of choline present within the diet. In contrast to the effects in peripheral tissues, the concentration of free choline in brain was not reduced by dietary deprivation of free choline; however, the increase in free choline that occurred when rats were decapitated was reduced in brains by deficiency of choline, suggesting a decrease in the concentration of esterified forms of cerebral choline. The concentration of acetylcholine was not reduced in the brain, duodenum, heart, kidney or stomach of 21-week old rats raised from birth on a choline-deficient diet, in the duodenum of rats given a choline-deficient diet for 1, 5 or 11 days, or in brains of rats deprived of free choline for 1 or 11 days. However, the rate of in vivo synthesis of ACh from [methyl-3H]choline was accelerated in cholinergic tissues that were depleted of free choline (i.e. duodenum, heart and stomach).  相似文献   

2.
Tissue Choline Studied Using a Simple Chemical Assay   总被引:1,自引:1,他引:0  
Abstract: An enzymatic-radioisotopic assay was used to measure free choline in unextracted tissue. The lowest concentration of free choline in any tissue studied was present in human cerebrospinal fluid (mean, 5.7 μM; range, 1.8–31.2 μM). A postmortem increase in concentration of free choline occurred in blood (O.2 nmol/min ml), kidney (13 nmol/min·g), and liver (22 nmol/min·g) of mice. The concentration of free choline in these tissues was estimated by extrapolation to be 5, 77, and 29 nmol/g (or ml), respectively. Several treatments were found to increase the concentration of free choline. For example, intraperitoneal administration of choline or 2-amino-2-methyl-propanol (a choline oxidase inhibitor) induced an increase in the level of choline in blood, kidneys, liver, and brain of mice, and administration of 2-dimethylaminoethanol (deanol) caused an increase in kidney and liver choline. The level of choline in blood was increased when rats were treated orally with either antibiotics or esters of choline such as phosphorylcholine, glycerylphos-phorylcholine, laroylcholine, or propionylcholine. The results show that the concentration of free choline may be regulated by intestinal metabolism, availability of esterified precursors, and activity of enzymes that metabolize choline.  相似文献   

3.
Choline Uptake by Cerebral Capillary Endothelial Cells in Culture   总被引:4,自引:3,他引:1  
A passage of choline from blood to brain and vice versa has been demonstrated in vivo. Because of the presence of the blood-brain barrier, such passage takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, the choline transport properties of cerebral capillary endothelial cells have been studied in vitro. Bovine endothelial cells in culture were able to incorporate [3H]choline by a carrier-mediated mechanism. Nonlinear regression analysis of the uptake curves suggested the presence of two transport components in cells preincubated in the absence of choline. One component showed a Km of 7.59 +/- 0.8 microM and a maximum capacity of 142.7 +/- 9.4 pmol/2 min/mg of protein, and the other one was not saturable within the concentration range used (1-100 microM). When cells were preincubated in the presence of choline, a single saturable component was observed with a Km of 18.5 +/- 0.6 microM and a maximum capacity of 452.4 +/- 42 pmol/2 min/mg of protein. [3H]Choline uptake by endothelial cells was temperature dependent and was inhibited by the choline analogs hemicholinium-3, deanol, and AF64A. The presence of ouabain or 2,4-dinitrophenol did not affect the [3H]choline transport capacity of endothelial cells. Replacement of sodium by lithium and cell depolarization by potassium partially inhibited choline uptake. When cells had been preincubated without choline, recently transported [3H]choline was readily phosphorylated and incorporated into cytidine-5'-diphosphocholine and phospholipids; however, under steady-state conditions most (63%) accumulated [3H]choline was not metabolized within 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Choline is a component of the normal diet, and when humans ingest large amounts they excrete trimethylamine (which can impart a fishy body odor). In the presence of nitrite, trimethylamine can be converted to dimethylnitrosamine, a potent carcinogen. Bacteria in the large intestine metabolize choline to form trimethylamine. We determined that a bacterium normally present in the oral cavity also has this capacity. Mixed bacterial flora cultured from dental plaque and saliva converted choline to trimethylamine. The only organism with trimethylamine-forming capability isolated from these mixed cultures was identified as Streptococcus sanguis I (a facultative anaerobe). The other products formed when choline was cleaved were ethanol and acetate. The formation of trimethylamine by S. sanguis I was enzyme-mediated. Activity was destroyed by heating at 100 degrees C, and obeyed Michaelis-Menten kinetics (K(apparent) for choline = 184 +/- 58 microM; V(max apparent) = 1.7 +/- 0.1 micromol/mg protein/h). Activity was maximal at pH 7.5 to 8.5, was membrane-bound, and required a divalent metal cation (cobalt or iron). More trimethylamine was produced by bacteria incubated under a nitrogen than under an aerobic atmosphere. Activity was inhibited by deanol, betaine aldehyde, hemicholinium-3, iodoacetate, semicarbazide, and 2,4-dinitrophenol, and was enhanced by sulfhydryl-reducing agents (glutathione, 2-mercaptoethanol, DL-dithiothreitol) and sodium bisulfite. The enzyme activity that we describe in S. sanguis I is similar to that previously described in the anaerobic bacteria isolated from intestinal flora.  相似文献   

5.
The effect of dimethylaminoethanol (deanol) on amphetamine-induced stereotyped behavior (AISB) in guinea pigs was studied. Deanol had no effect on AISB which suggests that deanol has little if any central cholinergic effect on dopamine related stereotyped behavior. This lack of central cholinergic effect is discussed in relationship to the reported clinical efficacy of deanol in human movement disorders.  相似文献   

6.
Commercial samples of hemicholinium-3 (HC-3) have been found to vary in colour (from white to a sandy-yellow colour) and chemical composition. There were no significant differences between the various HC-3 samples with regards to inhibition of high affinity choline uptake into synaptosomes or inhibition of neuromuscular transmission in the chick biventer cervicis (CBC) preparation. Yellow HC-3 inhibited acetylcholinesterase more than white HC-3 with I50 of 4.8 × 10?5 M and 3.3 × 10?4 M, respectively. Carbachol-induced contractions of the CBC preparation were inhibited more by yellow HC-3 than white HC-3; the opposite was true for acetylcholine- induced contractions. The results indicated that there is a minor contaminant in yellow HC-3 other than deanol which was a potent inhibitor of acetylcholinesterase and the carbachol response.  相似文献   

7.
The hydrophilic betaines, deanol betaine, triethanol betaine, diethanolthetin and methylethanolthetin, and also thioxanium betaine and citrulline betaine, were accumulated by Escherichia coli. All betaines tested had significant osmoprotective activity for E. coli and, with the exception of citrulline betaine and diethanolthetin, also demonstrated urea protection. Staphylococcus aureus accumulated only methylethanolthetin, deanol betaine and thioxanium betaine: the first two had an osmoprotective effect but conferred no urea protection. Diethanolthetin and thioxanium betaine significantly decreased urea tolerance for S. aureus.  相似文献   

8.
A method for determination of picomolar quantities of acetylcholine and choline in solutions and tissue extracts is described. The analytes are injected into a continuous stream of a simple medium flowing through a sequence of enzyme reactors containing acetylcholinesterase, choline oxidase, and peroxidase. Additional reactors with choline oxidase and catalase are used to remove endogenous choline from the tissue extracts in which the content of acetylcholine is to be measured. Reaction products are detected fluorometrically or luminometrically. The limits of sensitivity are about 10 pmol/sample with luminometric and 0.2 pmol/sample with fluorometric detection.  相似文献   

9.
Despite being widely hypothesized, the actual contribution of choline as a methyl source for phosphatidylethanolamine (PE) methylation has never been demonstrated, mainly due to the inability of conventional methods to distinguish the products from that of the CDP-choline pathway. Using a novel combination of stable-isotope labeling and tandem mass spectrometry, we demonstrated for the first time that choline contributed to phosphatidylcholine (PC) synthesis both as an intact choline moiety via the CDP-choline pathway and as a methyl donor via PE methylation pathway. When hepatocytes were labeled with d(9)-choline containing three deuterium atoms on each of the three methyl groups, d(3)-PC and d(6)-PC were detected, indicating that newly synthesized PC contained one or more individually mobilized methyl groups from d(9)-choline. The synthesis of d(3)-PC and d(6)-PC was sensitive to the general methylation inhibitor 3-deazaadenosine and were specific products of PE methylation using choline as a one-carbon donor. While the contribution to the CDP-choline pathway remained intact in hepatocarcinoma cells, contribution of choline to PE methylation was completely disrupted. In addition to a previously identified lack of PE methyltransferase, hepatocarcinoma cells were found to lack the abilities to oxidize choline to betaine and to donate the methyl group from betaine to homocysteine, whereas the usage of exogenous methionine as a methyl group donor was normal. The failure to use choline as a methyl source in hepatocarcinoma cells may contribute to methionine dependence, a widely observed aberration of one-carbon metabolism in malignancy.  相似文献   

10.
To facilitate investigation of the metabolism of lysophosphatidylcholine and choline lysoplasmalogen in small quantities of tissue, a method for the quantification of these phospholipid species that is capable of accurate and reproducible analysis in samples which contain less than 1 nmol of total choline lysophospholipid was developed. The procedure employs chloroform and methanol extraction of phospholipids from isolated tissue with subsequent separation of the choline lysophospholipid fraction by high-performance liquid chromatography. The choline lysophospholipids are then acetylated with [3H]acetic anhydride and the [3H]acetyl-lysophosphatidylcholine product is isolated by thin-layer chromatography and quantified by liquid scintillation counting. The choline lysophospholipid content in the sample is determined from a standard curve constructed from samples containing a known amount of synthetic lysophosphatidylcholine with correction for recovery based on the inclusion of [14C]lysophosphatidylcholine as an internal standard.  相似文献   

11.
Abstract— Initial velocity of choline uptake by cortical synaptosomes from the Long-Evans rat has been measured as a function of both choline and sodium concentration. These data were then fitted to the rate equation for each of several possible models which characterize the participation of sodium in the transport process, and the models giving best fit were identified. Although one cannot unequivocally distinguish between a model including a high affinity carrier component plus diffusion and one including both high affinity and low affinity carriers, the conclusions concerning the high affinity component are the same in both cases. The major conclusions from the model are as follows: (1) The carrier may first combine with either choline or sodium; if the first reaction is with sodium, then there is an obligatory reaction with a second sodium before choline can interact with the carrier. (2) Translocation may occur as either CS or CNa2S (C= carrier; S= choline; CS= carrier-substrate complex). (3) The apparent maximal velocity (Va) is dependent on the sodium concentration. (4) K1, the choline concentration giving Va/2. is also dependent on the sodium concentration. K1 increases with [Na] from 0 to 38.41 mm ; above 38.41 mm -[Na]. K1 declines with [Na]. (5) There is a sigmoidal relationship between velocity of uptake and [Na]; however, uptake is not zero at [Na] = 0. (6) Jm. uptake at a given [choline] and infinite [Na]. is hyperbolically related to the choline concentration, but changes slowly over the range of 0.5–5.0 ± 10-6m . (7) KNa, the sodium concentration giving a velocity equal to Jm/2, is related to the choline concentration by a quadratic equation, and was found to be greater than physiological [Na] at choline concentrations of 0.5, 0.6, or 1.0 ± 10-6m . but less than physiological [Na] at choline concentrations of 2.0 or 5.0 ± 10-6m . The best fit model for the high affinity uptake of choline is very similar to what has been found in previous studies for the high affinity uptake of glutamic acid and GABA, thus raising the question of whether or not all high affinity synaptosomal mechanisms may be variations of a common model.  相似文献   

12.
This report describes the optimal conditions for the determination of bound choline in rat plasma. The method used was based on the liberation of choline by phospholipase D from phospholipids containing choline in plasma, followed by high-performance liquid chromatographic analysis. Normal concentrations of total, free and bound choline in rat plasma were found to be 1278.7 ± 132.5, 11.5 ± 2.2 and 1267.2 ± 125.5 nmol/ml, respectively. The described procedure has the advantages of rapidity, specificity, excellent precision and the need for only a small amount of the sample.  相似文献   

13.
A simple, efficient, economic, and sensitive method is presented for the detection of choline and acetylcholine in neuronal tissue using HPLC, a postcolumn enzyme reactor with immobilized enzyme, and electrochemical detection. The method is based on a separation of choline and acetylcholine by cation exchange HPLC followed by passage of the effluent through a postcolumn reactor containing a mixture of acetylcholinesterase and choline oxidase; the latter enzyme converts choline to betaine and hydrogen peroxide, the former enzyme hydrolyzes acetylcholine to acetate and choline. The hydrogen peroxide produced is electrochemically detected. A simple and efficient preparation of neuronal tissue is described using an optional prepurification step on Sephadex G-10 columns, offering the possibility to detect choline and acetylcholine as well as catecholamines and their related metabolites in the same tissue sample. The sensitivity of the assay system is 250 fmol for choline and 500 fmol for acetylcholine.  相似文献   

14.
Increasing interest in receptor-regulated phospholipase C and phospholipase D hydrolysis of cellular phosphatidylcholine motivates the development of a sensitive and simple assay for the water-soluble hydrolytic products of these reactions, phosphocholine and choline respectively. Choline was partially purified from the methanol/water upper phase of a Bligh & Dyer extract by ion-pair extraction using sodium tetraphenylboron, and the mass of choline was determined by a radioenzymic assay using choline kinase and [32P]ATP. After removal of choline from the upper phase, the mass of residual phosphocholine was determined by converting it into choline by using alkaline phosphatase, followed by radioactive phosphorylation. In addition to excellent sensitivity (5 pmol for choline and 10 pmol for phosphocholine), these assays demonstrated little mutual interference (phosphocholine----choline = 0%; choline----phosphocholine = 5%), were extremely reproducible (average S.E.M. of 3.5% for choline and 2.9% for phosphocholine), and were simple to perform with instrumentation typically available in most laboratories. In addition, the ability to apply the extraction technique to the upper phase of Bligh & Dyer extracts permitted simple analysis not only of choline and phosphocholine, but also of phosphatidylcholine and lipid products of phospholipase C and phospholipase D activity (1,2-diacylglycerol and phosphatidic acid respectively) from the same cell or tissue sample.  相似文献   

15.
A flow injection chemiluminescent method is described for the determination of choline. The method is based on the production of hydrogen peroxide from choline using on-line covalently bound immobilized choline oxidase column. The product is mixed downstream and detected via the cobalt catalyzed chemiluminescent oxidation of luminol. The detection limit is 1×10−7 mol/L, with rsd 1.8 to 2.8% in the range 2–10×10−5 mol/L. The sample throughput is 30 per hour. The method was applied to the determination of choline produced off-line from phosphatidylcholine using phospholipase-D isolated from cabbage. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
《Journal of Physiology》1998,92(3-4):235-239
Choline is product and precursor to both acetylcholine and membrane phospholipids, and, in the brain, is ultimately provided by the circulation. The brain is protected from excess choline and choline deprivation by a refined system of homeostatic mechanisms that maintain a level of extracellular choline that, for its role as precursor, meets saturation criteria under normal conditions. The kinetic and activity profiles of choline are typical for a biosynthetic precursor.  相似文献   

17.
1. Replacement of choline by the phosphonium analogue does not affect the growth rate of P815Y, NIL, 3T3, and SV40/3T3 cells in culture. 2. The fatty acid composition of the resulting phosphonium phosphatidylcholine is similar to that of phosphatidylcholine. 3. The rate of synthesis and degradation of phosphatidylcholine and of the phosphonium analogue are similar. 4. Phospholipid-exchange protein does not distinguish between phosphatidylcholine and the phosphonium analogue. 5. By contrast, incorporation of phosphonium choline into sphingomyelin occurs to only a minor extent. 6. It is concluded that, since the enzymes involved in the turnover of phosphatidylcholine do not discriminate between quaternary N and quaternary P in the polar head-group region, phosphonium choline should prove to be a useful probe for 31P nuclear-magnetic-resonance (n.m.r.) studies of natural membranes.  相似文献   

18.
Betaine is the major oxidation product of [Me-14C] choline produced by rat liver slices. Liver slices from adult rats rapidly oxidize [Me-14C] choline to betaine and the bulk of the betaine produced is recovered in the incubation medium. Considerably more choline is oxidized to betaine than is phosphorylated to phosphorylcholine. The rate of phosphorylation of choline appears to be independent of the rate of choline oxidation. Liver slices from fetal and young rats oxidize choline to betaine at a lower rate than adult liver slices.The ability of mitochondria to oxidize [Me-14C] choline to betaine aldehyde and betaine is considerably lower in fetal liver than in adult liver. The major product with both fetal and adult mitochondria is betaine aldehyde. Choline oxidation by mitochondria begins to increase 1 day prior to birth and increases progressively to adult levels by 18 days. The developmental pattern for choline oxidation is similar to the pattern for succinic dehydrogenase activity.  相似文献   

19.
Kinetic mechanism of choline kinase from rat striata   总被引:2,自引:0,他引:2  
The kinetic mechanism of choline kinase associated with both the cytosolic and membrane fractions of synaptosomes isolated from rat striata was studied. The velocity of choline kinase was measured using various concentrations of MgATP at several concentrations of uncomplexed Mg2+ and a single concentration of choline. This experiment was repeated using different concentrations of choline. Analysis of these data according to a terreactant mechanism indicates that MgATP binds in rapid equilibrium prior to Mg2+, but the binding of MgATP and choline is random. Product inhibition by phosphorylcholine was noncompetitive versus both choline and MgATP. Hemicholinium-3 (HC-3), an analog of choline and competitive inhibitor of the sodium-dependent high affinity choline transport system, was noncompetitive versus choline and uncompetitive versus MgATP at high levels of Mg2+. However, when the concentration of Mg2+ was decreased below the KMg2 +, HC-3 was noncompetitive versus MgATP. Thiocholine, another analog of choline, gave slope-linear intercept hyperbolic inhibition versus choline. Mg-5'-adenylyl imidodiphosphate, an analog of MgATP, was competitive versus MgATP and noncompetitive versus choline. Virtually identical results were obtained using either soluble or particulate forms of choline kinase from rat striata. All data are consistent with the mechanism suggested by initial velocity studies alone and additionally suggest that the release of MgADP is slow, occurs last, and may limit the overall rate of the reaction.  相似文献   

20.
D E Monks  J H Goode    R E Dewey 《Plant physiology》1996,110(4):1197-1205
An expressed sequence tag from Arabidopsis that displayed sequence homology to mammalian and yeast choline kinases was used to isolate choline kinase-like cDNAs from soybean (Glycine max L.). Two distinct cDNAs, designated GmCK1 and GmCK2, were recovered that possessed full-length reading frames, each sharing approximately 32% identity at the predicted amino acid level with the rat choline kinase. A third unique choline kinase-like cDNA, GmCK3, was also identified but was not full length. Heterologous expression of GmCK1 in yeast (Saccharomyces cerevisiae) and GmCK2 in both yeast and Escherichia coli demonstrated that each encodes choline kinase activity. In addition to choline, other potential substrates for the choline kinase enzyme include ethanolamine, monomethylethanolamine (MME), and dimethylethanolamine (DME). Both soybean choline kinase isoforms demonstrated negligible ethanolamine kinase activity. Competitive inhibition assays, however, revealed very distinct differences in their responses to DME and MME. DME effectively inhibited only the GmCK2-encoded choline kinase activity. Although MME failed to effectively inhibit either reaction, an unexpected enhancement of choline kinase activity was observed specifically with the GmCK1-encoded enzyme. These results show that choline kinase is encoded by a small, multigene family in soybean comprising two or more distinct isoforms that exhibit both similarities and differences with regard to substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号