首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biogenesis of 30 S and 50 S ribosomal subunits in exponentially growing Escherichia coli has been studied by following the rate of appearance of pulse-labelled ribosomal proteins on mature subunits. Cells were pulse-labelled for two minutes and for three and a half minutes with radioactive leucine. Ribosomal proteins were extracted and purified by chromatography on carboxymethyl cellulose and analysed by bidimensional gel electrophoresis. All 30 S proteins and most of the 50 S proteins were thus prepared and their radioactivity counted: unequal labelling was obtained. 30 S and 50 S proteins were ordered according to increasing specific radioactivity at both time pulses. The incorporation was greater at three and a half minutes than at two minutes. No major difference in the order at the two labelling times was observed.Only two classes of proteins can be defined in the 30 S and the 50 S subunits, namely early and late proteins. In each class a gradual increase in the radioactivity is apparent from the poorly labelled to the highly labelled proteins. This suggests a definite order of addition.Early 30 S proteins: S17, S16, S15, S19, S18, S8, S4, S20, S10, S6, S9, S12, S7.Late 30 S proteins: S5, S3, S2, S14, S11, S13, S1, S21.Early 50 S proteins: L22, L20, L21, L4, L13, L16, L3, L23, L18, L24, L28, L17, L19, L29, L32, L5, L15, L2, L30, L27.Late 50 S proteins: L25, L11, L7, L12, L1, L9, L8, L10, L33, L14, L6.This order is discussed taking into account the pool size of the proteins measured in the same conditions of cell culture.  相似文献   

2.
A large-scale method for the isolation of von Willebrand factor (vWF) from human factor VIII concentrates was developed in order to study the structure of this protein and its platelet binding activity. vWF is composed of a number of glycoprotein subunits that are linked together by disulfide bonds to form a series of multimers. These multimers appear to contain an even number of subunits of 270K. Two minor components of Mr 140K and 120K were also identified, but these chains appear to result from minor proteolysis. The smallest multimer of vWF contained nearly equimolar amounts of the 270K, 140K, and 120K subunits, while the largest multimers contained less than 20% of the two minor components. Amino acid sequence analysis, amino acid composition, and cleavage by cyanogen bromide indicate that the 270K subunits are identical and each is a single polypeptide chain with an amino-terminal sequence of Ser-Leu-Ser-Cys-Arg-Pro-Pro-Met-Val-Lys and a carboxyl-terminal sequence of Glu-Cys-Lys-Cys-Ser-Pro-Arg-Lys-Cys-Ser-Lys. Platelet binding in the presence of ristocetin was 8-fold greater with multimers larger than five (i.e., containing more than 10 subunits of 270K) as compared to multimers less than three (containing less than six subunits of 270K). However, partially reduced vWF (Mr 500K), regardless of whether it was prepared from large or small molecular weight multimers, gave platelet binding similar to that of the smallest multimers. Likewise, partial proteolysis by elastase, thermolysin, trypsin, or chymotrypsin produced small "multimer-like" proteins with platelet binding properties similar to either partially reduced vWF or to the smallest multimers. We conclude that human vWF contains identical 270K subunits assembled into a multivalent structure. Disassembly by either partial reduction or partial proteolysis produces essentially monovalent protein with platelet binding properties similar to that of the smallest multimers. Multivalency is likely the primary factor responsible for the increase in biological activity with multimer size.  相似文献   

3.
Co-operative autoregulation of a replication protein gene   总被引:5,自引:0,他引:5  
In this work we present the localization and characterization of the repl promoter (Prepl) and show aspects of the regulation. Comparison of Prepl with other autoregulated replication protein gene promoters revealed similarities, but Prepl differs from some of these characterized promoters in not being regulated by the heat-shock RNA polymerase. Primer extension analysis showed that Prepl is contained within five helically aligned 18 base pair repeats, or 18-mers of the previously defined minimal origin. In addition, we find that Prepl is autoregulated by a trans-acting product encoded in the REPI region. Purified Repl protein binds to the 18-mer region of the origin, suggesting that the repl gene is autoregulated by the protein product. The autoregulation appears to be co-operative since decreasing the 18-mer binding site region results in a concomitant non-linear loss of autorepression. The deletion derivatives show a decreased ability to bind the Repl protein when compared with origin DNA containing all of the binding region. The diminished capacity of the various deletion derivatives to bind Repl in vitro correlates with the loss of autorepression seen in vivo.  相似文献   

4.
A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any structural differences in the protein when bound to the all-trans and 9-cis isomers, the structures of all-trans retinoic acid-ERABP and 9-cis retinoic acid ERABP were determined. Our results indicate that the all-trans isomer of retinoic acid adopts an 8-cis structure in the binding cavity with no concomitant conformational change in the protein. The structure of TTNPB-ERABP is also reported herein. To accommodate this all-trans analog, which cannot readily adopt a cis-like structure, alternative positioning of critical binding site side chains is required. Consequently, both protein and ligand adaption are observed in the formation of the various holo-proteins.  相似文献   

5.
The rat liver asialoglycoprotein receptor consists of two typesof subunits, a predominant polypeptide designated rat hepaticlectin 1 (RHL-1) and a minor polypeptide, RHL-2/3, that comesin two differentially glycosylated forms. The exact stoichiometryand arrangement of the subunits in the RHL oligomer are notknown. The carbohydrate-recognition domain of RHL-2/ has beenprepared by limited proteolysis of the liver receptor so thatits properties can be compared with those of the correspondingdomain of RHL-1 previously produced in a bacterial expressionsystem. Binding studies indicate that while RHL-1 binds N-acetylgalactosaminewith approximately 60-fold higher affinity than it binds galactose,RHL-2/ has only 2-fold selectivity for N-acetylgalactosamine.In general, the pattern of monosaccharide-binding specificityfor RHL-2/ is similar to RHL-1, but the discrimination of varioussugars relative to galactose is reduced substantially. Limitedproteolysis and crosslinking studies demonstrate that RHL- 2/is easily removed from the RHL oligomer in detergent solutionand that RHL-1 remains at least trimeric following removal ofRHL-2/. These studies suggest that RHL-1 forms a ligand-bindingcore while RHL-2/ acts more as an accessory subunit contributingto selective binding of certain oligosaccharide structures. asialoglycoprotein receptor binding carbohydrate recognition lectin proteolysis  相似文献   

6.
Retinoid interactions determine the function of the cellular retinaldehyde binding protein (CRALBP) in the rod visual cycle where it serves as an 11-cis-retinol acceptor for the enzymatic isomerization of all-trans- to 11-cis-retinol and as a substrate carrier for 11-cis-retinol dehydrogenase (RDH5). Based on preliminary NMR studies suggesting retinoid interactions with Met and Trp residues, human recombinant CRALBP (rCRALBP) with altered Met or Trp were produced and analyzed for ligand interactions. The primary structures of the purified proteins were verified for mutants M208A, M222A, M225A, W165F, and W244F, then retinoid binding properties and substrate carrier functions were evaluated. All the mutant proteins bound 11-cis- and 9-cis-retinal and therefore were not grossly misfolded. Altered UV-visible spectra and lower retinoid binding affinities were observed for the mutants, supporting modified ligand interactions. Altered kinetic parameters were observed for RDH5 oxidation of 11-cis-retinol bound to rCRALBP mutants M222A, M225A, and W244F, supporting impaired substrate carrier function. Heteronuclear single quantum correlation NMR analyses confirmed localized structural changes upon photoisomerization of rCRALBP-bound 11-cis-retinal and demonstrated ligand-dependent conformational changes for residues Met-208, Met-222, Trp-165, and Trp-244. Furthermore, residues Met-208, Met-222, Met-225, and Trp-244 are within a region exhibiting high homology to the ligand binding cavity of phosphatidylinositol transfer protein. Overall the data implicate Trp-165, Met-208, Met-222, Met-225, and Trp-244 as components of the CRALBP ligand binding cavity.  相似文献   

7.
Co-operative binding of histones to DNA   总被引:2,自引:0,他引:2  
  相似文献   

8.
A novel type of artificial glycoprotein was developed, by using dihydrofolate reductase (DHFR) and methotrexate (MTX) as a protein-ligand pair. Various oligosaccharides linked to MTX were shown to bind tightly with DHFR and afforded oligosaccharide-grafted protein, which could be isolated easily by lectin beads.  相似文献   

9.
X-ray structure and ligand binding study of a moth chemosensory protein   总被引:6,自引:0,他引:6  
Chemosensory proteins (CSPs) are believed to be involved in chemical communication and perception. Such proteins, of M(r) 13,000, have been isolated from several sensory organs of a wide range of insect species. Several CSPs have been identified in the antennae and proboscis of the moth Mamestra brassicae. One of them, CSPMbraA6, a 112-amino acid antennal protein, has been expressed in large quantities and is soluble in the Escherichia coli periplasm. X-ray structure determination has been performed in parallel with ligand binding assays using tryptophan fluorescence quenching. The protein has overall dimensions of 25 x 30 x 32 A and exhibits a novel type of alpha-helical fold with six helices connected by alpha-alpha loops. A narrow channel extends within the protein hydrophobic core. Fluorescence quenching with brominated alkyl alcohols or fatty acids and modeling studies indicates that CSPMbraA6 is able to bind such compounds with C12-18 alkyl chains. These ubiquitous proteins might have the role of extracting hydrophobic linear compounds (pheromones, odors, or fatty acids) dispersed in the phospholipid membrane and transporting them to their receptor.  相似文献   

10.
Heme proteins can perform a variety of electrochemical functions. While natural heme proteins carry out particular functions selected by biological evolution, artificial heme proteins, in principle, can be tailored to suit specified technological applications. Here we describe initial characterization of the electrochemical properties of a de novo heme protein, S824C. Protein S824C is a four-helix bundle derived from a library of sequences that was designed by binary patterning of polar and nonpolar amino acids. Protein S824C was immobilized on a gold electrode and the formal potential of heme-protein complex was studied as a function of pH and ionic strength. The binding of exogenous N-donor ligands to heme/S824C was monitored by measuring shifts in the potential that occurred upon addition of various concentrations of imidazole or pyridine derivatives. The response of heme/S824C to these ligands was then compared to the response of isolated heme (without protein) to the same ligands. The observed shifts in potential depended on both the concentration and the structure of the added ligand. Small changes in structure of the ligand (e.g. pyridine versus 2-amino pyridine) produced significant shifts in the potential of the heme-protein. The observed shifts correlate to the differential binding of the N-donor molecules to the oxidized and reduced states of the heme. Further, it was observed that the electrochemical response of the buried heme in heme/S824C differed significantly from that of isolated heme. These studies demonstrate that the structure of the de novo protein modulates the binding of N-donor ligands to heme.  相似文献   

11.
Modulation of A-type voltage-gated K+ channels can produce plastic changes in neuronal signaling. It was shown that the delayed-rectifier Kv1.1 channel can be converted to A-type upon association with Kvbeta1.1 subunits; the conversion is only partial and is modulated by phosphorylation and microfilaments. Here we show that, in Xenopus oocytes, expression of Gbeta1gamma2 subunits concomitantly with the channel (composed of Kv1.1 and Kvbeta1.1 subunits), but not after the channel's expression in the plasma membrane, increases the extent of conversion to A-type. Conversely, scavenging endogenous Gbetagamma by co-expression of the C-terminal fragment of the beta-adrenergic receptor kinase reduces the extent of conversion to A-type. The effect of Gbetagamma co-expression is occluded by treatment with dihydrocytochalasin B, a microfilament-disrupting agent shown previously by us to enhance the extent of conversion to A-type, and by overexpression of Kvbeta1.1. Gbeta1gamma2 subunits interact directly with GST fusion fragments of Kv1.1 and Kvbeta1.1. Co-expression of Gbeta1gamma2 causes co-immunoprecipitation with Kv1.1 of more Kvbeta1.1 subunits. Thus, we suggest that Gbeta1gamma2 directly affects the interaction between Kv1.1 and Kvbeta1.1 during channel assembly which, in turn, disrupts the ability of the channel to interact with microfilaments, resulting in an increased extent of A-type conversion.  相似文献   

12.
We have determined, for the first time, the enthalpic contributions to the energy change associated with ligand reorganization (LR) upon the binding of the same ligand to multiple sites within human serum albumine (HSA). Quantum mechanics based density functional theory (DFT) has been used for the LR calculations, which provides much better accuracy than previously used molecular mechanics methods (MM). Our findings show that for some ligands these enthalpic contributions can be attributed to specific structural and conformational changes.  相似文献   

13.
Family 6 carbohydrate-binding modules were amplified by polymerase chain reaction (PCR) from Clostridium stercorarium strain NCIB11754 genomic DNA as a triplet. Individually, these modules bound to xylooligosaccharides and cellooligosaccharides with affinities varying from approximately 3 x 10(3) M(-1) to approximately 1 x 10(5) M(-1). Tandem and triplet combinations of these modules bound co-operatively to soluble xylan and insoluble cellulose to give approximately 20- to approximately 40-fold increases in affinity relative to the individual modules. This co-operativity was an avidity effect resulting from the modules within the tandems and triplet interacting simultaneously with proximal binding sites on the polysaccharides. This occurred by both intrachain and interchain interactions. The duplication or triplication of modules appears to be linked to the growth temperature of the organism; co-operativity in these multiplets may compensate for the loss of affinity at higher temperatures.  相似文献   

14.
Protein kinases are essential for the regulation of cellular growth and metabolism. Since their dysfunction leads to debilitating diseases, they represent key targets for pharmaceutical research. The rational design of kinase inhibitors requires an understanding of the determinants of ligand binding to these proteins. In the present study, a theoretical model based on continuum electrostatics and a surface-area-dependent nonpolar term is used to calculate binding affinities of balanol derivatives, H-series inhibitors, and ATP analogues toward the catalytic subunit of cAMP-dependent protein kinase (cAPK or protein kinase A). The calculations reproduce most of the experimental trends and provide insight into the driving forces responsible for binding. Nonpolar interactions are found to govern protein-ligand affinity. Hydrogen bonds represent a negligible contribution, because hydrogen bond formation in the complex requires the desolvation of the interacting partners. However, the binding affinity is decreased if hydrogen-bonding groups of the ligand remain unsatisfied in the complex. The disposition of hydrogen-bonding groups in the ligand is therefore crucial for binding specificity. These observations should be valuable guides in the design of potent and specific kinase inhibitors.  相似文献   

15.
Although the rotamase activity of the FK506 binding protein is inhibited by ligand binding, it is hypothesized that the ligand/protein complex itself may be responsible for the immunosuppressive effects of FK506. We have therefore examined the structure of the FK506 binding protein in the presence of an analog of FK506 (FK520) by a combination of fluorescence, CD, FTIR and calorimetry. While only small changes in the overall structure of the protein may be induced by ligand, a large change in thermal stability of the binding protein is observed.  相似文献   

16.
17.
Analysis of the binding of C-reactive protein to chromatin subunits   总被引:17,自引:0,他引:17  
C-reactive protein (CRP) is an acute phase serum protein in man. The functional activities of CRP, like Ig, include complement activation and enhancement of phagocytosis. CRP binding to several substrates, including phosphocholine, individual denatured histones, and chromatin, has been demonstrated. We previously demonstrated that CRP binding to chromatin is dependent on the presence of histone H1, despite the fact that CRP binds to purified individual histones H2A and H2B, as well as to H1. In this report we examined the binding of CRP to native sub-nucleosomal chromatin fragments. CRP binding to the H2A-H2B dimer and (H3-H4)2 tetramer was demonstrated and these reactions were inhibited by phosphocholine. However, no binding to the subnucleosome complexes (H2A-H2B)-DNA and (H3-H4)2-DNA was seen. Similarly, CRP binding to H1 was eliminated when H1 was reconstituted with DNA. The reconstitution of H1-depleted chromatin with H1 restored CRP binding. CRP binding to nucleosome core particles, as previously demonstrated by others, was confirmed. Therefore, the interaction of CRP with individual core histones does not appear to be responsible for the binding of CRP to native chromatin. However, binding to core particles could be mediated by differentially exposed determinants on H2A and H2B.  相似文献   

18.
Interleukin-4 (IL-4) is an important class I cytokine involved in adaptive immunity. IL-4 binds with high affinity to the single-pass transmembrane receptor IL-4Rα. Subsequently, IL-4Rα/IL-4 is believed to engage a second receptor chain, either IL-2Rγ or IL-13Rα1, to form type I or II receptor complexes, respectively. This ternary complex formation then triggers downstream signaling via intracellular Janus kinases bound to the cytoplasmic receptor tails. Here, we study the successive steps of complex formation at the single cell level with confocal fluorescence imaging and correlation spectroscopy. We characterize binding and signaling of fluorescently labeled IL-4 by flow cytometry of IL-4-dependent BaF3 cells. The affinity to ectopically expressed IL-4Rα was then measured by single-color fluorescence correlation spectroscopy in adherent HEK293T cells that express the components of the type II IL-4R but not type I. Finally, IL-4-induced complex formation was tested by dual-color fluorescence cross-correlation spectroscopy. The data provide evidence for codiffusion of IL-4-A647 bound IL-4Rα and the type II subunit IL-13Rα1 fused to enhanced green fluorescent protein, whereas type I complexes containing IL-2Rγ and JAK3 were not detected at the cell surface. This behavior may reflect hitherto undefined differences in the mode of receptor activation between type I (lymphoid) and type II (epithelial) receptor expressing cells.  相似文献   

19.
  1. Download : Download high-res image (122KB)
  2. Download : Download full-size image
  相似文献   

20.
Histidine triad nucleotide binding protein (HINT1) is an intracellular protein that binds purine mononucleotides. Strong sequence conservation suggests that these proteins play a fundamental role in cell biology, however its exact cellular function continues to remain elusive. nuclear magnetic resonance (NMR) studies using STD and HSQC were conducted to observe ligand binding to HINT1. These studies were confirmed using fluorescence spectroscopy titrations. We found that AICAR, the first non-phosphate containing ligand, binds to mouse histidine triad nucleotide binding protein 1 (HINT1). Chemical shift perturbations are mapped onto the X-ray structure showing AICAR binds at the same site as GMP. The NMR results demonstrated that this method will be valuable for the future screening of small molecules that can be used to modulate the function of HINT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号