首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Parkinson's disease the progressive loss of nigrostriatal dopamine neurons leads to striatal dopamine deficiency and correlates with the severity of parkinsonian disability. The findings concerning dopamine receptors both in vitro and in vivo are not consistent, possibly reflecting differences in patient populations, but the presynaptic defect in dopaminergic neurotransmission is greater than that seen in postsynaptic receptor binding studies. The cholinergic neurons in the extrapyramidal nuclei are relatively well preserved, but subcortico-cortical and -hippocampal cholinergic neurons degenerate in relation to the degree of dementia. The decreased GABA receptor binding in the parkinsonian substantia nigra possibly reflects the loss of nigral dopamine neurons, since nigral GABA receptors are located on these neurons. Of the various neuropeptides, the concentration of met- and leu-enkephalin seems to be reduced in the striatum. In the substantia nigra the concentration of substance P decreases, together with the met-enkephalin and cholecystokinin levels. The concentration of somatostatin decreases in the frontal cortex and hippocampus of demented patients. With the exception of the association between cortical somatostatin deficiency and intellectual deterioration, the role of the neuropeptides in the pathophysiology and clinical features of Parkinson's disease are not yet fully understood.  相似文献   

2.
Polyunsaturated fatty acid (PUFA) levels (an index of the amount of substrate available for lipid peroxidation) were measured in several brain regions from patients who died with Parkinson's disease and age-matched control human postmortem brains. PUFA levels were reduced in parkinsonian substantia nigra compared to other brain regions and to control tissue. However, basal malondialdehyde (MDA; an intermediate in the lipid peroxidation process) levels were increased in parkinsonian nigra compared with other parkinsonian brain regions and control tissue. Expressing basal MDA levels in terms of PUFA content, the difference between parkinsonian and control substantia nigra was even more pronounced. Stimulating MDA production by incubating tissue with FeSO4 plus ascorbic acid, FeSO4 plus H2O2, or air alone produced lower MDA levels in the parkinsonian substantia nigra, probably reflecting the lower PUFA content. These results may indicate that an increased level of lipid peroxidation continues to occur in the parkinsonian nigra up to the time of death, perhaps because of continued exposure to excess free radicals derived from some endogenous or exogenous neurotoxic species.  相似文献   

3.
Levels of iron, copper, zinc, manganese, and lead were measured by inductively coupled plasma spectroscopy in parkinsonian and age-matched control brain tissue. There was 31-35% increase in the total iron content of the parkinsonian substantia nigra when compared to control tissue. In contrast, in the globus pallidus total iron levels were decreased by 29% in Parkinson's disease. There was no change in the total iron levels in any other region of the parkinsonian brain. Total copper levels were reduced by 34-45% in the substantia nigra in Parkinson's disease; no difference was found in the other brain areas examined. Zinc levels were increased in substantia nigra in Parkinson's disease by 50-54%, and the zinc content of the caudate nucleus and lateral putamen was also raised by 18-35%. Levels of manganese and lead were unchanged in all areas of the parkinsonian brain studied when compared to control brains, except for a small decrease (20%) in manganese content of the medial putamen. Increased levels of total iron in the substantia nigra may cause the excessive formation of toxic oxygen radicals, leading to dopamine cell death.  相似文献   

4.
Decreased Ferritin Levels in Brain in Parkinson''s Disease   总被引:5,自引:2,他引:3  
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin.  相似文献   

5.
Abstract: Iron is abnormally accumulated in the substantia nigra pars compacta of patients with Parkinson's disease (PD). Because neuronal and glial iron uptake seems to be mediated by the binding of ferrotransferrin to a specific high-affinity receptor on the cell surface, the number of transferrin receptors could be altered in this disease. The regional distribution of specific binding sites for human 125I-diferric transferrin has been studied in the mesencephalon, on cryostat-cut sections from autopsy brains of control subjects and parkinsonian patients by in vitro autoradiography. Densities of binding sites were highest in the central gray substance (˜10 fmol/mg of tissue equivalent), intermediate in the catecholaminergic cell group A8, superior colliculus, and ventral tegmental area, and almost nonexistent in the substantia nigra. The density of 125I-transferrin binding sites was not significantly different between parkinsonian and control brains in any region analyzed. These results show that in the mesencephalon the regional density of transferrin binding sites is lowest in the dopaminergic cell groups, which are the most vulnerable to PD, and suggest that iron does not accumulate through an increased density of transferrin receptors at the level of the substantia nigra.  相似文献   

6.
Monoiodo [125I-Tyr3]-Neurotensin binding was studied in post mortem substantia nigra from 17 control and 15 parkinsonian subjects. Binding to individual homogenates was decreased by 58%, 49% and 26% at 0.36, 1.4, 5.5 M(-9) concentration of ligand, respectively. Saturation analysis using pooled substantia nigra demonstrated an almost complete loss of the high affinity component of the neurotensin receptor complex, yielding a 24% loss of the total binding capacity, with no alteration of the low affinity component. Similarly an important loss of binding was observed in monoiodo[125I-Tyr3]-Neurotensin autoradiograms of two substantia nigra from parkinsonian subjects. These results support the hypothesis of neurotensin receptors occurring on dopamine cell bodies and/or dendrites in human substantia nigra. Role of neurotensin may be of importance in the regulation of dopamine pathway involved in parkinsonism.  相似文献   

7.
8.
Abstract: Specific [3H]strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity K d (3–8 n m ) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 n m , respectively) and rat substantia nigra (12 n m ). In the human brain the distribution of [3H]strychnine binding (at 10 n m ) was: spinal cord – substantia nigra, pars compacta > substantia nigra, pars reticulata = inferior olivary nucleus > cerebral cortex. The binding capacity ( B max) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. [ 3 H]Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in a preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, [3H]strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. [3H]Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.  相似文献   

9.
D-1 and D-2 receptor densities, evaluated respectively by [3H]SCH 23390 and [3H]spiperone binding, and DARPP-32 (dopamine and adenosine 3':5'-monophosphate-regulated phosphoprotein-32K) concentrations, were studied in the brains of control and parkinsonian subjects postmortem. D-2 receptor density was unchanged in the putamen of parkinsonian patients. D-1 receptor density was unchanged in the putamen and substantia nigra pars reticulata (SNR) of parkinsonian patients, but decreased by 28% in the substantia nigra pars compacta (SNC). DARPP-32, which is localized in the same structures as D-1 receptors of which it is thought to represent the intracellular messenger, decreased by 45% in the putamen, 66% in the SNR, and 79% in the SNC. The decrease in D-1 receptors in the SNC may be due to degeneration of pallidonigral GABAergic neurons, but some of the D-1 receptors may be on the nigrostriatal dopaminergic neurons themselves. The dissociation between the alteration of D-1 receptor densities and DARPP-32 concentrations in both the striatum and substantia nigra, which are of the same order in the two structures, may be an index of functional hypoactivity of D-1 neurotransmission.  相似文献   

10.
The delta opioid peptide (DOP) receptor has been proposed as a target in the symptomatic therapy of Parkinson’s disease. However, the circuitry underlying the antiparkinsonian action of DOP receptor agonists and their site of action have never been adequately investigated. Systemic administration of the DOP receptor agonist (+)‐4‐[(αR)‐α‐(2S,5R)‐allyl‐2,5‐dimethyl‐1‐piperazinyl)‐3‐methoxy‐benzyl]‐N‐N‐diethylbenzamide (SNC‐80) attenuated akinesia/bradykinesia and improved motor activity in 6‐hydroxydopamine hemilesioned rats. Opposite effects were produced by the selective DOP receptor antagonist naltrindole (NTD), suggesting that endogenous enkephalins tonically sustain movement under parkinsonian conditions. Microdialysis revealed that SNC‐80 reduced GABA release in globus pallidus (GP) while NTD elevated it. Moreover, SNC‐80 reduced GABA and glutamate release in substantia nigra reticulata (SNr) whereas NTD reduced GABA without affecting glutamate release. The bar test coupled to microdialysis showed that perfusion with NTD in SNr but not GP or striatum prevented the antiakinetic effect of systemic SNC‐80 and its neurochemical correlates. Consistently, microinjections of SNC‐80 into SNr or bicuculline in GP attenuated parkinsonian‐like symptoms while SNC‐80 microinjections in GP or striatum were ineffective. This study demonstrates that nigral DOP receptors mediate antiparkinsonian actions of SNC‐80 and challenges the common view that DOP receptor agonists solely attenuate parkinsonism via pallidal mechanisms.  相似文献   

11.
The total activity of superoxide dismutase (SOD) and cytosolic and particulate activity of SOD in human substantia nigra and cerebellum were measured by a spectrophotometric method based on the ability of SOD to inhibit the autoxidation of adrenaline. The cytosolic and particulate isoenzymes of SOD were differentiated by the inclusion of potassium cyanide which selectively inhibits cytosolic copper/zinc-dependent SOD activity. In autopsied human brains, there was no difference in total SOD activity, or the activity of SOD in cytosol in substantia nigra of patients dying with Parkinson's disease compared to age-matched controls. However, the activity of the particulate form of SOD was higher in the parkinsonian substantia nigra compared to control tissue. In the cerebellum there was no difference in the total, cytosolic, or particulate activity of SOD between parkinsonian patients and age-matched controls. Increased activity of SOD in particulate fraction may be a protective response to elevated levels of toxic free radicals in the parkinsonian substantia nigra. Alternatively, increased SOD activity may induce cell death through the accumulation of hydrogen peroxide.  相似文献   

12.
Abstract– The GABA content of the spinal cord and of approx 70 discrete rat brain nuclei is measured with a simple rapid semi-automated fluorimetric assay, after prevention of post-mortem effects with 3-mercaptopropionic acid. We found that microwave irradiation produced decreases in the GABA contents of the microdissected zona reticulata of the substantia nigra, indicating that microwave fixation is not suitable to measure GABA levels in microdissected brain nuclei. In approx 70% of the nuclei in the anterior half of the brain the GABA concentration was found to be between 41 and 90nmol GABA/mg protein. The GABA content varied from 11 to 40 nmol GABA/mg protein in the posterior half of the brain. High GABA levels were found in some hypothalamic nuclei, the globus pallidus and eminentia mediana. An extremely high GABA level was found in the zona reticulata of the substantia nigra. GABA is unevenly distributed in the striatum. The highest concentration was found in the caudal part and in the ventral region at any level of the striatum. In the spinal cord the highest concentration of GABA was in the sacral region.  相似文献   

13.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

14.
Summary Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-day-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h, or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal, and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta, and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.  相似文献   

15.
Detrimental deletions: mitochondria, aging and Parkinson's disease   总被引:3,自引:0,他引:3  
As individuals enter their 80s, they are inevitably confronted with the problem of neuronal loss in the brain. The incidence of the common movement disorder 'mild parkinsonian signs' (MPS) is approximately 50% over the age of 85 years. It has long been known that the loss of dopaminergic neurons in the substantia nigra pars compacta is a neuropathological hallmark of Parkinson's disease (PD). Recently, two papers present clear evidence for a high burden of mitochondrial DNA deletions within substantia nigra neurons in aged individuals and individuals with PD, pointing towards a common pathway inevitably leading to neuronal dysfunction and death.  相似文献   

16.
Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-days-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.  相似文献   

17.
Abstract: The ionic species 1-methyl-4-phenylpyridinium (MPP+) seems to be the metabolite responsible for the damage to dopaminergic neurons occurring after administration of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In the present study we show that the unilateral stereotaxic microinjection of MPP+ into the substantia nigra pars reticulata in rats produces immediately intense and long-lasting (up to 96 h) contralateral turning behavior in a dose-dependent manner. This behavioral effect was correlated with a dose- and time-dependent decrease (up to 90%) of glutamate decarboxylase activity and with a notable loss of neurons in the injected nigra reticulata. GABA levels in the injected nigra were also decreased, whereas the dopamine concentration in the ipsilateral striatum was not affected at 24 h, when maximal behavioral effects were observed. The circling behavior was prevented by the dopamine carrier blocker nomifensine only during the first 2 h, whereas the dopamine receptor antagonist haloperidol was ineffective. The results indicate that MPP+ is toxic for inhibitory GABAergic neurons in the nigra pars reticulata and, furthermore, suggest that disruption of the function of these GABAergic neurons may be involved in the abnormal motor behavior produced by the injection of MPP+ in the substantia nigra.  相似文献   

18.
The levels of different elements were studied by x-ray microanalysis in the substantia nigra and the central gray substance of patients with Parkinson's disease, progressive supranuclear palsy, and matched controls. In control brains, only iron, potassium, silicum, sodium, sulfur, and zinc were within the limit of detection of the technique. The abundance of each element was different, but their respective concentrations in the two brain regions were similar, except for sulfur levels which were higher on neuromelanin aggregates in the substantia nigra than in nigral regions lacking neuromelanin, and in the central gray substance. In Parkinson's disease, but not in progressive supranuclear palsy, nigral iron levels increased in regions devoid of neuromelanin and decreased on neuromelanin aggregates, but were unchanged in the central gray substance, when compared to control values. Concentrations of the other elements in the central gray substance and substantia nigra were not different from controls in brains from patients with Parkinson's disease and progressive supranuclear palsy. Analysis of Lewy bodies in the parkinsonian substantia nigra revealed high levels of iron and the presence of aluminum. Metal abundance was not affected in progressive supranuclear palsy, in spite of the nigral cell death. This suggests that the increased iron levels and the detection of aluminum observed in Parkinson's disease are not solely the consequence of the neuronal degeneration.  相似文献   

19.
The specific binding of [3H]gamma-aminobutyric acid (GABA) to nigral GABA receptors has been studied in postmortem brains from controls and patients with Huntington's disease (HD). A specific increase in the number of high-affinity binding sites for [3H]GABA was observed in HD patients, analogous to changes observed in rat substantia nigra [3H]GABA binding after striatal kainic acid (KA) lesion. The results provide further support for the striatal KA lesion in the rat as an animal model of HD. The implications of the results for the proposed therapeutic potential of GABA agonists in HD are discussed.  相似文献   

20.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry   总被引:2,自引:1,他引:1  
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+-stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km) was increased and maximal velocity (Vmax) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号