首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Functional supersensitivity of mesolimbic and striatal dopamine receptors has been suggested to contribute to the pathogenesis of schizophrenia and tardive dyskinesia. Using the rodent model of chronic administration of the neuroleptic haloperidol, we investigated the possible desensitizing effects of a tripeptide structurally unrelated to dopamine agonists, L-prolyl-L-leucyl-glycinamide (PLG) on mesolimbic and striatal dopaminergic receptor supersensitivity. Administration of PLG either prior to or after chronic haloperidol, inhibited the supersensitivity of dopamine receptors. The results have implications for pharmacological intervention in preventing tardive dyskinesia and relapse psychosis of schizophrenia.  相似文献   

2.
P Muller  P Seeman 《Life sciences》1977,21(12):1751-1758
Since long-term neuroleptic therapy is known to alter brain dopaminergic sensitivity, we tested the effects of chronic haloperidol administration (10 mg/kg/day for over 3 weeks) on the amount of the dopamine receptors (using 3H-apomorphine and 3H-haloperidol) in various regions of the rat brain. To test whether the changes in dopamine receptors were selectively produced, we also assayed acetylcholine receptors (with 3H-quinuclidinyl benzilate or 3H-QNB), alpha-noradrenergic receptors (with 3H-WB-4101), 3H-serotonin receptors and 3H-naloxone receptors.The specific binding of 3H-haloperidol increased significantly by 34% in the striatum and by 45% in the mesolimbic region after long-term haloperidol. The specific binding of 3H-apomorphine also increased significantly by 77% in the striatum and 55% in the mesolimbic area. Although there was a small significant increase of 20% in specific 3H-serotonin binding in the striatum, no such increment occurred in the hippocampus or the cerebral cortex. No significantly different binding occurred for the other 3H-ligands in these brain regions except for a 13% increase in alpha-noradrenergic binding in the cerebral cortex. These results indicate that long-term haloperidol treatment produces rather selective increases in dopamine/neuroleptic receptors, without much change in 4 other types of receptors. Such relatively selective increments in these receptors may be the basis of dopaminergic supersensitivity (e.g. tardive dyskinesia) after long-term haloperidol.  相似文献   

3.
Abstract— Drugs possessing (chlorpromazine, haloperidol, clozapine, thioridazine and sulpiride) or lacking (benzoctamine and perlapine) antipsychotic activity were compared with respect to their ability to enhance x-methyl-p-tyrosine-induced dopamine disappearance from the mesolimbic area and corpus striutum of rat brain. In addition, their effects on the endogenous concentrations of homovanillic (HVA) and 3.4-dihydroxyphenylacetic (DOPAC) acids in these two brain areas were determined. Some of the drugs enhanced dopamine disappearance in the mesolimbic area more than in the striatum. The most active in this respect were sulpiride. perlapine and chlorpromazine. By contrast, haloperidol was slightly more active in the striatum than in the mesolimbic area. None of the drugs was more efficient in elevating HVA levels in the mesolimbic area than in the striatum. However, there were large differences in the relative extent of the HVA increases in the two regions. Benzoctamine, perlapine and chlorpromazine increased HVA concentrations in the mesolimbic area nearly as much as in the striatum. Thioridazine and haloperidol, however, elevated striatal HVA much more effectively. Haloperidol and clozapine increased the DOPAC concentration in both areas to about the same extent. The other drugs were more active in the striatum. The largest difference between both regions was shown by chlorpromazine. Perlapine and benzoctamine, both lacking antipsychotic activity, produced much larger increases of HVA than of DOPAC. This is in contrast to the results obtained with true neuroleptics and may reflect an involvement of release phenomena in the action of these two drugs on dopamine metabolism. These results suggest that a preferential increase of dopamine turnover in the mesolimbic area is not necessarily linked to a better ratio of antipsychotic activity vs. extrapyramidal side effects. Moreover, an antiacetylcholine component of dopamine receptor blocking drugs does not seem to be a prerequisite for preferential activity on dopamine turnover in the mesolimbic system.  相似文献   

4.
Neuroleptics are reported to produce their antipsychotic activity and extrapyramidal side effects by blocking dopamine receptors in the mesolimbic system and striatum respectively. We have thus looked at the characteristics of the binding of 3H-spiroperidol to specific binding sites in these two areas of rat brain and the ability of a number of neuroleptics to displace it from these sites.The 3H-spiroperidol binding sites in the striatum and mesolimbic area are different and evidence has been obtained for an involvement of 5-HT receptors, particularly in the latter area.In the striatum the order of activity of neuroleptics in displacing 3H-spiroperidol binding parallels their clinical potency. This is not the case in the mesolimbic system. Also the ratio of activity of a neuroleptic in the two brain areas does not correlate with its ability to produce extrapyramidal disturbance in man. This may be due to the interaction of neuroleptics, particularly in the mesolimbic system, with receptors not involved in the expression of antipsychotic activity.  相似文献   

5.
H Lal 《Life sciences》1975,17(4):483-495
Acute systematic administration of narcotic analgesics increases the firing rate of nerve cells in the zona compacta of the substantia nigra, causes an increase in the rate of dopamine turnover in striatal and mesolimbic areas of the brain, stimulates prolactin release, inhibits brain self-stimulation and discriminated shock-avoidance, blocks cardiovascular effects of systemically injected dopamine, blocks aggression as well as compulsive jumping in mice treated with DOPA and amphetamine, antagonizes stereotypy induced by apomorphine or amphetamine, and blocks apomorphine-induced vomiting in dogs. Chronic administration of narcotic analgesics results in withdrawal signs upon the cessation of the drug administration. These signs include, tolerance to the increase in striatal dopamine turnover caused by narcotic analgesics or haloperidol, aggressive behaviors which are further stimulated by directly or indirectly acting dopamine-receptor agonists and are blocked by dopamine-receptor blockers, facilitation of recovery from the “lateral hypothalamic syndrome”, an increase in basal levels of striatal adenylate cyclase which shows greater sensitivity to dopamine, and, an enhanced sensitivity to apomorphine-induced reduction of dopamine turnover. It is therefore, concluded that acute administration of narcotic drugs results in an inhibition of dopamine-receptor activity while chronic administration of these drugs results in an increased response of these dopamine receptors to dopamine agonists. Recent experiments on the interaction of other drugs with narcotic analgesics suggest that, unlike the direct action of neuroleptics on the dopamine receptors, the narcotic action on dopamine receptors is indirect.  相似文献   

6.
Specific 125I-CCK receptor binding was significantly increased in brain tissue taken from guinea pig or mouse following chronic (2-3 week) daily administration of haloperidol (2-3 mg/kg/day). Scatchard analysis indicated the increase in CCK binding was due to an increased receptor number (B max) with no change in affinity (Kd). In guinea pigs, the increased CCK binding was observed in the mesolimbic regions and frontal cortex, but not in striatum, hippocampus nor posterior cortex. In mice, however, the increases occurred in both pooled cerebral cortical-hippocampal tissue, and in the remainder of the brain. Enhanced CCK receptor binding was also observed in membranes prepared from whole brain of mice one month following intracisternal injection of 6-hydroxydopamine. Additionally, an increase in CCK binding was observed in mesolimbic regions and frontal cortex, but not striatum or hippocampus, of guinea pigs 3 weeks after an unilateral radiofrequency lesions of the ipsilateral ventral tegmentum. The present studies demonstrate that three different procedures which reduce dopaminergic function in the brain enhance CCK receptor binding. The data provide further support for a functional interrelationship between dopaminergic systems and CCK in some brain regions and raise the possibility that CCK may play a role in the antipsychotic action of neuroleptics.  相似文献   

7.
This study examines the effects of melatonin on dopaminergic supersensitivity induced by long-term treatment with haloperidol in rats. Enhancements of spontaneous general activity in an open-field and of stereotyped behavior induced by apomorphine after abrupt withdrawal from long-term treatment with haloperidol were used as experimental parameters for dopaminergic supersensitivity. Experiment 1 was conducted to investigate the effects of melatonin on the development of dopaminergic supersensitivity, and experiment 2 was conducted to investigate the effects of melatonin on the development as well as on expression of dopaminergic supersensitivity. Rats of both experiments were long-term treated with saline or haloperidol concomitant to saline or melatonin. In experiment 1 behavioral observations were performed after abrupt withdrawal from long-term treatment. In experiment 2 behavioral observations were performed 1 hour after an acute injection of saline or melatonin, administered after the abrupt withdrawal from long-term treatment. Both behavioral parameters used showed the development of central dopaminergic supersensitivity in rats treated with haloperidol since 24 hours after abrupt withdrawal. Concomitant treatment with melatonin intensified haloperidol-induced dopaminergic supersensitivity, observed 72 hours after withdrawal. Melatonin treatment per se also induced behavioral supersensitivity evaluated by both open-field and stereotyped behaviors, although it was more fugacious than that presented by haloperidol. Acute treatment with melatonin reverted the enhancement of the haloperidol-induced dopaminergic supersensitivity produced by concomitant long-term treatment with melatonin, as well as melatonin-induced dopaminergic supersensitivity per se. Our results support previous evidence of antidopaminergic effects of melatonin and demonstrate that repeated administration of this hormone modifies the plasticity of behaviors mediated by central dopaminergic systems.  相似文献   

8.
Interactions between neurotensin and dopamine in the brain: an overview   总被引:4,自引:0,他引:4  
R Quirion 《Peptides》1983,4(5):609-615
Neurotensin (NT)-like immunoreactivity is found in high concentrations in many brain areas under important dopaminergic control, such as the nucleus accumbens and the substantia nigra and its receptors are also highly concentrated in the A-9 and A-10 regions. Neurotensin-induced behavioral actions after intracerebral injections bear many similarities with neuroleptics. Moreover, NT is able to modify dopamine metabolism in various brain regions. Finally, 6-hydroxydopamine (6-OHDA) lesions of A-9 and A-10 regions markedly decrease NT receptors in these areas and in the caudate-putamen. All together, these data strongly suggest that NT interacts with mesolimbic and nigrostriatal dopaminergic pathways in the brain.  相似文献   

9.
Rats administered chronic neuroleptics for 6–7 weeks-- haloperidol (2.5 mg/rat or 1 mg/kg), clozapine (25 mg/kg), or thioridazine (20 mg/kg)--after termination of chronic drug treatment exhibited greater apomorphine-induced stereotyped behavior than their saline controls. Rats treated with thioridazine or clozapine, but not haloperidol, also showed increases in locomotor activity during withdrawal. These findings indicate that behavioral supersensitivity may develop after chronic clozapine treatment as well as after chronic haloperidol.  相似文献   

10.
A Louilot  M Le Moal  H Simon 《Life sciences》1987,40(20):2017-2024
Buspirone is a non-benzodiazepine drug with anxiolytic properties. It has been reported to induce a marked increase in the metabolism of dopamine in the striatum and the nucleus accumbens which is similar to that induced by neuroleptics. It has been suggested that the effect observed in the striatum reflects an action of buspirone on dopaminergic autoreceptors in both terminals and cell bodies. In the present study, presynaptic effects of buspirone on dopaminergic metabolism in the nucleus accumbens were investigated, and they were compared to the effects of the classical neuroleptic, haloperidol. Dopaminergic terminals were isolated by infusion of tetrodotoxin into the median forebrain bundle in order to evaluate the effects of buspirone and haloperidol on presynaptic receptors. Changes in dopamine metabolism were determined by in vivo voltammetry. Buspirone administered after interruption of the impulse flow did not affect dopamine metabolism. In contrast haloperidol treatment led to an increase in metabolism of dopamine. It is concluded that buspirone did not act at the presynaptic level and furthermore on dopaminergic autoreceptors.  相似文献   

11.
A R Cools  J M van Rossum 《Life sciences》1980,27(14):1237-1253
From current knowledge, it is possible to substantiate the original concept of DAe and DAi receptors including the predicted correlation with the anatomical, histochemical, biochemical and functional features of the distinct neuronal structures, in which they occur; labelling them as neostriatal DAe receptors and mesolimbic DAi receptors appears to be justified. Available data warrant a revision of currently employed behavior and pharmacological tests. When revised in terms of the DAe-DAi concept, assessment of such tests reveals that agents such as (-)NPA, 6, 7ADTN and certain ergot alkaloids like lergotrile, lisuride and, to a less degree, CB-154 are weak DAe agonists and strong DAi antagonists (Table I). The discovery that mesolimbic α-like NE receptors which regulate the DA activity at the level of the mesolimbic DAi, but not neostriatal DAe, receptors show adaptational changes following priming or subacute treatments with apomorphine or haloperidol, opens new perspectives for understanding phenomena such as the development of hypersensitivity to apomorphine etc. Presynaptic DA receptors located within the DA synaps and DA receptors located at DA cell-bodies resemble closely the DAe receptors, although absence of linkage to the enzyme adenylyl cyclase hints at some distinction. It is possible that the distinct classes of DA receptors identified by behavior and pharmacological studies in mice correspond with the DAe and DAi receptors in snails, rats and cats. There is no evidence to suggest that DAe and DAi receptors are directly related to a) so-called DA1 and DA2 receptors which are coupled and uncoupled respectively to the enzyme adenylyl cyclase, or to b) any of the DA-specific binding sites identified with radiolabelled DA agonists or antagonists. Nonetheless, it cannot be excluded that DAe receptors may correspond with DA-specific binding sites identified with tritiated DA and/or haloperidol, and DAi receptors with a particular subclass of DA-specific binding sites identified within certain mesolimbic structures with radiolabelled spiperone. Thus, future work is still required to relate DAe and DAi receptors to particular, molecular entities within the brain.  相似文献   

12.
The effect of chronic levodopa-carbidopa administration (200 mg/kg for 21 days) on guinea pigs rendered behaviorally supersensitive by the prior administration of haloperidol (.5 mg/kg for 21 days) was examined. Animals who showed an increased behavioral response to apomorphine after chronic haloperidol administration were treated with levodopa-carbidopa and then apomorphine - induced stereotypy was reexamined. Although the chronic levodopa control groups and the chronic haloperidol control remained supersensitive to the behavioral effect of apomorphine, the haloperidol-levodopa group's behavioral response to apomorphine returned to normal. Both chronic dopaminergic antagonist and agonist administration have been demonstrated to induce heightened apomorphine-induced stereotypy and this has been interpreted as a reflection of altered striatal dopamine receptor site sensitivity. The finding that the serial administration of a chronic dopaminergic antagonist followed by a chronic dopaminergic agonist results in a return to normal of a striatal dopamine receptor-dependent behavior suggests that these chronic treatments affect dopamine receptor sites by different mechanisms of action. Since neuroleptic induced dopaminergic supersensitivity in animals is an accepted model of tardive dyskinesia, levodopa may also reverse dopaminergic supersensitivity in patients and might be a potential therapeutic agent in tardive dyskinesia.  相似文献   

13.
This investigation assessed the relative abilities of three neuroleptics to supersensitize behaviors mediated by the nigrostriatal and mesolimbic dopamine (DA) systems. Rats were treated with either haloperidol, thioridazine, fluotracen or vehicle for 21 days. Stereotypy, in response to DA injection to the striatum, or locomotor activity, in response to DA injection to the nucleus accumbens, were measured after the termination of drug treatment. Pre-treatment with haloperidol enhanced both behavioral responses to central DA injection, while pre-treatment with thioridazine did not enhance either behavior. Pre-treatment with fluotracen enhanced the locomotor response to DA injection to the nucleus accumbens, but did not alter stereotypy after DA injection to the striatum. Neuroleptics differ in their ability to supersensitize the same DA-related behavior, and act selectively to supersensitize behaviors mediated by different DA systems.  相似文献   

14.
Nicotine was administered acutely and subchronically (14 days) to determine whether various synaptic mechanisms are selectively altered in the nigrostriatal and mesolimbic dopaminergic systems in the rat. When added to tissue preparations in vitro, nicotine had no effects on tyrosine hydroxylase, synaptosomal uptake of [3H]dopamine or binding of [3H]spiperone to D2 receptors in either system. However, acute treatment in vivo stimulated tyrosine hydroxylase activity in the nucleus accumbens. This effect was prevented by pretreatment with a nicotinic antagonist, suggesting that it was mediated by nicotinic receptors. Since subchronic exposure to nicotine had no effect on tyrosine hydroxylase, it appears that tolerance develops to this action. In vivo treatment with nicotine did not alter dopamine uptake or receptor binding. The results suggest that, in doses which result in moderate plasma levels, nicotine has selective stimulant actions on nerve terminals of the mesolimbic system.  相似文献   

15.
Several lines of evidence suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide playing an important role as a neuromodulator. It has been indicated that PACAP is associated with mental diseases, and that regulation of the PACAPergic signals could be a potential target for the treatment of such psychiatric states as schizophrenia. Recent studies have suggested that action of neuroleptic drugs is mediated not only by dopaminergic and serotonergic neurotransmission, but also via neuropeptides which may act both as neurotransmitters and as neuromodulators. The present study examines whether currently-used neuroleptics influence the action of PACAP receptors, whose expression is altered in a schizophrenic patient. Real-time polymerase chain reaction (PCR) was used to examine the effects of haloperidol, olanzapine and amisulpride on the expression of genes coding PAC1/VPAC type receptors in the T98G glioblastoma cell line, as an example of an in vitro model of glial cells. PAC1 mRNA expression fell after 24-h incubation with haloperidol or olanzapine; however the effect was not maintained after 72 h, and haloperidol even up-regulated PAC1 mRNA expression in a dose-dependent manner. All the examined drugs decreased VPAC2 mRNA expression, especially after 72-h incubation. Haloperidol (typical neuroleptic) was distinctly more potent than atypical neuroleptic drugs (olanzapine and amisulpride). In addition, PACAP increased PAC1 and VPAC2 mRNA expression. In conclusion, our findings suggest PACAP receptors may be involved in the mechanism of typical and atypical neuroleptic drugs.  相似文献   

16.
Dopamine receptors in the central nervous system can be studied by measuring the specific binding of [3H]dopamine, [3H]haloperidol, d-[3H]LSD, [3H]dihydroergocryptine or [3H]apomorphine. The receptors are stereoselectively blocked by +)-butaclamol, a neuroleptic. All neuroleptics inhibit the specific binding of [3H]haloperidol in relation to their clinical potencies. The radioligand that desorbs most slowly from the receptor is [3H]apomorphine, thus making it a reliable ligand for dopamine receptors. Dopamine agonists that compete for [3H]apomorphine binding do so at concentrations that correlate with their potency in stimulating striatal adenylate cyclase. Structure-activity analysis, using [3H]apomorphine, confirms that the active dopamine-mimetic conformation is the beta rotamer of dopamine. Prolonged exposure in vitro of caudate homogenate to high concentrations of dopamine leads to increased binding of [3H]apomorphine or [3H]haloperidol, suggesting receptor "sensitization." Chronic haloperidol treatment of rats leads to an increased number of dopamine/neuroleptic receptors in the striatum, but a decrease in the pituitary.  相似文献   

17.
The time course and distribution of alterations in cerebral metabolic activity after haloperidol administration were evaluated in relation to the pharmacokinetics of haloperidol and the topography of the dopaminergic system in the brain. Local cerebral glucose utilization was measured, using the 2-deoxyglucose technique, in awake rats after i.p. administration of the dopamine antagonist haloperidol (0.5 or 1 mg/kg). Haloperidol significantly reduced glucose utilization in 60% of 59 brain regions examined, but produced a large increase in the lateral habenula. The regional distribution of changes in glucose utilization was not closely related to the known anatomy of the brain dopaminergic system. The time course of the effect of haloperidol on cerebral metabolism was different for the two doses studied (0.5 and 1 mg/kg), and was not simply related to estimated brain concentrations of haloperidol. However, a linear relation between the metabolic effect and the time-integrated brain concentration was demonstrated. These results show that haloperidol has an effect on CNS metabolic activity that is more widespread than would be predicted from the topography of the dopaminergic system; this may be due to indirect propagation of the primary effects of haloperidol. The metabolic response to haloperidol depends on brain concentration and duration of exposure to the drug.  相似文献   

18.
Apomorphine was found to cause an increase in cerebellar cGMP content. Bromocriptine, at a dose that caused stereotypies, neither elevated cGMP, nor blocked the apomorphine- induced rise in cGMP. The apomorphine-induced rise in cGMP was effectively blocked by haloperidol and some other neuroleptics, but not by sulpiride. These actions of the neuroleptics correlated with their ability to displace 3H-spiroperidol from striatal membranes, suggesting that dopamine receptor interactions were important in the cGMP changes noted. Based on the observation that haloperidol antagonized the increase induced by restraint, it is suggested that dopaminergic systems are involved in the reaction to stress.  相似文献   

19.
Zetidoline (ZET), a rather selective dopamine (DA) D2-receptor blocker, was found to be equipotent to haloperidol and over 300 times as potent as sulpiride in activating the firing rate of substantia nigra dopaminergic neurons (SN-DA neurons) in unanesthetized rats. Moreover, like classic and atypical neuroleptics, ZET reversed and prevented apomorphine-induced inhibition of SN-DA neurons.  相似文献   

20.
The ovarian hormone estrogen has been implicated in schizophrenia symptomatology. Low levels of estrogen are associated with an increase in symptom severity, while exogenous estrogen increases the efficacy of antipsychotic medication, pointing at a possible interaction between estrogen and the dopaminergic system. The aim of this study is to further investigate this interaction in an animal model of some aspects of schizophrenia using awake functional magnetic resonance imaging. Animals receiving 17β-estradiol and haloperidol were scanned and BOLD activity was assessed in response to amphetamine. High 17β-estradiol replacement and chronic haloperidol treatment showed increased BOLD activity in regions of interest and neural networks associated with schizophrenia (hippocampal formations, habenula, amygdala, hypothalamus etc.), compared with low, or no 17β-estradiol. These data show that chronic haloperidol treatment has a sensitizing effect, possibly on the dopaminergic system, and this effect is dependent on hormonal status, with high 17β-estradiol showing the greatest BOLD increase. Furthermore, these experiments further support the use of imaging techniques in studying schizophrenia, as modeled in the rat, but can be extended to addiction and other disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号