首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The increase in ATP and E.C. in the mung bean axes during imbibi- tion was accompanied by an increase in the rate of protein synthesis. When the axes were treated with 5×l0-5 M, and 5×10-4M 2,4-Dinitrophenol at the first 4 hours of imbibition respectively, the production of ATP was inhibited, and the E.C. value decreased; at the same time, the incorporation of 3H-leucine into the trichloroacetic acidinsoluble protein was inhibited also. CCCP (1×10-5M and 1×10-4M) had a similar effect as DNP on mung bean axes. Incubated with 0.2 μg. ml-1 cycloheximide for 4 hours, the protein synthsized reduced by 69% compared to the control, the ATP and E. C. were slightly higher than the untreated one; while incubated with 1 μg and 5 μg cycloheximide, the protein synthesis almost stopped, the content of ATP decreased slightly, and E. C. value remained constant. When the mung bean axes were incubated with 1 μg, and 10 μg. ml-1 of actinomycin D for 4 hours, the protein synthesis was inhibited 23%, and 48% respectively. On the other hand, ATP, E. C. and the adenylate pool were not affected. These results showed that protein synthesis in mung bean axes during im- bibition was highly sensitive to the changes of ATP level and E. C. value. In contrast, adenylate pool was not affected by the actinomycin D.  相似文献   

2.
The antipsychotic drugs chlorpromazine, pimozide, and penfluridol caused a 50% inhibition of growth of Tetrahymena at concentrations of 4.5, 5.5, and 1.5 μM, respectively. The degree of growth inhibition was dependent on the concentration of cells; higher drug concentrations were needed to produce inhibition of denser cell cultures. Binding studies with penfluridol showed that 50% growth inhibition resulted when approximately 50 μmoles of drug were bound per 106 cells. A 20-min preincubation of cells with chlorpromazine (14.7 μM) inhibited DNA synthesis by 46%, and with penfluridol (4 μM) DNA synthesis was inhibited by 27%. The incorporation of labeled thymidine into the thymidine triphosphate pool was inhibited by chlorpromazine but not by penfluridol, indicating that the drugs produce their growth inhibitory effects by different mechanisms. TDP kinase activity was demonstrated in a particle-free fraction of the cells. Its enzymatic activity was not affected by added chlorpromazine, penfluridol, or calmodulin, suggesting that inhibition of DNA synthesis by these drugs may be a consequence of growth inhibition.  相似文献   

3.
Most mature ascidian oocytes undergo germinal vesicle breakdown (GVBD) when released by the ovary into sea water (SW). Acidic SW blocks this but they can be stimulated by raising the pH, increasing intracellular cAMP levels by cell permeant forms, inhibiting its breakdown or causing synthesis. Boltenia villosa oocytes undergo GVBD in response to these drugs. However, the cAMP receptor protein kinase A (PKA) does not appear to be involved, as oocytes are not affected by the kinase inhibitor H-89. Also, the PKA independent Epac agonist 8CPT-2Me-cAMP stimulates GVBD in acidic SW. GVBD is inhibited in calcium free sea water (CaFSW). The intracellular calcium chelator BAPTA-AM blocks GVBD at 10?μM. GVBD is also inhibited when the ryanodine receptors (RYR) are blocked by tetracaine or ruthenium red but not by the IP(3) inhibitor D-609. However, dimethylbenzanthracene (DMBA), a protein kinase activator, stimulates GVBD in BAPTA, tetracaine or ruthenium red blocked oocytes. The calmodulin kinase inhibitor KN-93 blocks GVBD at 10?μM. This and preceding papers support the hypothesis that the maturation inducing substance (MIS) produced by the follicle cells in response to increased pH causes activation of a G protein which triggers cAMP synthesis. The cAMP then activates an Epac molecule, which causes an increase in intracellular calcium from the endoplasmic reticulum ryanodine receptor. The increased intracellular calcium subsequently activates calmodulin kinase, which causes an increase in cdc25 phosphatase activity, activating MPF and the progression of the oocyte into meiosis.  相似文献   

4.
Several studies indicate that the cytoskeleton may be involved in modulating the cellular response to environmental signals. We have studied the role of the cytoskeleton in regulating glycosaminoglycan (GAG) synthesis and secretion, hyaluronate (HA) endocytosis, the activities of hexoglycosidases, protein synthesis and secretion. Fibroblasts were treated with colchicine (1–8 μM ) and nocodazole (1 or 4 μM ) to alter microtubules or cytochalasin B (0·5–4 μM ) to alter microfilaments. Colchicine inhibited GAG synthesis and secretion in a concentration-dependent manner. It reduced protein and sulphated GAG secretion, while HA secretion was not affected. Concentration-dependent disruption of microtubules from the periphery toward the cellular centre with nocodazole inhibited only the secretion of GAG. Centrosomal microtubles appeared to be required to promote GAG synthesis; intact microtubules promoted the transport of secretory products, intercompatmental transport of lysosomal enzymes and lysosome maturation, but not protein synthesis and HA secretion. Cytochalasin B treatment inhibited, in a concentration-dependent manner, the synthesis and secretion of GAGs and proteins, and the endocytosis of HA. Intact microfilament mesh-works appeared to be required to promote synthesis and secretion of proteins and proteoglycans and to contribute to the transmembrane control of receptor-mediated endocytosis. Drug treatment of concanvalin A (Con A)-stimulated fibroblasts inhibited the stimulation of GAG synthesis. It is probable that this effect may result, in part, from drug-induced effects on Con A-mediated endocytosis.  相似文献   

5.
The effects of formamidoxime and hydroxyurea over a 105 concentration range were studied on macromolecular synthesis in E. coli, L5178Y mouse leukemic cells, isolated rat liver mitochondria and isolated rat cerebral cortex mitochondria. In E. coli 2 mg per ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 20% and 17%, DNA synthesis by 91% and 96%, protein synthesis by 54% and 60% and lipopolysaccharide synthesis by 65% and 48%. In L5178Y mouse leukemic cells 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 41% and 24%, DNA synthesis by 90% and 97%, protein synthesis by 59% and 44% and glycoprotein synthesis by 83% and 50%. In isolated rat liver mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 43% and 52%, DNA synthesis by 42% and 56% and protein synthesis by 18% and 30%. Glycoprotein synthesis was not affected. In isolated rat cerebral cortex mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 50% and 44%, DNA synthesis by 59% and 66% and protein synthesis by 48% and 40%. Glycoprotein synthesis again was not affected. Lower concentrations of the drugs produced less inhibition of macromolecular synthesis in each of the systems.  相似文献   

6.
Intact and excised cultured pea roots (Pisum sativum L. cv Alaska) were treated with chlorsulfuron at concentrations ranging from 2.8 ×10?4 M to 2.8×10?6 M. At all concentrations this chemical was demonstrated to inhibit the progression of cells from G2 to mitosis (M) and secondarily from G1 to DNA synthesis (S). The S and M phases were not directly affected, but the transition steps into those phases were inhibited. Total protein synthesis was unaffected by treatment of intact roots with 2.8×10?6 M chlorsulfuron. RNA synthesis was inhibited by 43% over a 24-h treatment period. It is hypothesized that chlorsulfuron inhibits cell cycle progression by blocking the G2 and G1 transition points through inhibition of cell cycle specific RNA synthesis.  相似文献   

7.
At least two forms of aryl acylamidase (E.C.3.5.1.13, AAA) were separated from rat brain extracts by ammonium sulfate precipitation (33–60% saturation) and subsequent Bio-Gel column chromatography. Fraction AAA-1 showed pH optimum at 7.5 whereas AAA-2 showed a pH optimum at 5.5 AAA-1 activity was markedly inhibited at pH 7.5 by d-LSD and 2-Br-LSD, moderately inhibited by 5-HT and slightly inhibited by tryptamine but it was not affected by 1-LSD, at 0.1 mM concentration. AAA-2 was only moderately inhibited at pH 5.5 by d-LSD and 2-Br-LSD but not affected by 1-LSD, 5-HT or tryptamine at the same concentrations. Catecholamines and their structurally related drugs had no significant effects on either enzyme activity. Kinetic studies with AAA-1 indicated competitive inhibition by d-LSD with a Ki value of 4.90 ± 0.61 μM.  相似文献   

8.
Time- and concentration-course studies were conducted to determine the effects of butachlor (N-[butoxymethyl]-2-chloro-2′,6′-diethylacetanilide) on photosynthesis, protein synthesis, RNA synthesis, and lipid synthesis using isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). At the 2-h incubation period, butachlor inhibited photosynthesis, protein synthesis, RNA synthesis, and lipid synthesis 99, 99, 96, and 81% respectively at 100 μM, and 0, 19, 17, and 40% respectively at 10 μM. At 100 μM and 15-, 30-, and 60-min incubations, RNA synthesis was inhibited 20, 76 and 90% respectively, and lipid synthesis 35, 48, and 62% respectively; photosynthesis and protein synthesis were inhibited over 90% at all of these time periods. The effects of 50 μM butachlor on protein and RNA synthesis in rice (Oryza sativa L.) and barnyardgrass (Echinochloa crusgalli L.) root and shoot segments were also investigated. Protein synthesis was inhibited in both species and to a greater degree in roots (81–90%) than in shoots (55–65%). RNA synthesis was inhibited 33% in barn-yardgrass roots but not significantly in barnyardgrass shoots or either organ of rice.  相似文献   

9.
Joe L. Key 《Plant physiology》1966,41(8):1257-1264
The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.  相似文献   

10.
Dibutyryl cyclic monophosphate (dBcAMP) has been shown to inhibit growth, and alter the morphology of astrocytes. However, the potential contribution of its hydrolytic product, butyrate, in inducing some of the changes that have been attributed to dBcAMP, is not clear. DNA, RNA, and purine synthesis were therefore studied in primary astrocyte cultures after 24 hours of exposure to varying concentrations of butyrate, dBcAMP, and agents that increase intracellular cAMP levels. Progression of cells through cell cycle was also studied by flow cytometry. Dibutyryl cAMP partially arrested cells in Go/G1 phase of cell cycle while sodium butyrate increased the percentage population of cells in G2/M phase. DNA synthesis and de novo purine synthesis were inhibited after treatment with dBcAMP, sodium butyrate, and various drugs that increase intracellular cAMP levels. RNA synthesis was increased with cAMP but was not affected by sodium butyrate. Our study shows that at millimolar concentrations, butyrate is capable of altering the cell cycle and inhibiting DNA synthesis in primary astrocyte cultures, in a manner that is similar although not identical to the effects of dBcAMP.  相似文献   

11.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

12.
The synthesis of DNA, RNA and protein was measured in L1210 cells following treatment with 8-methoxypsoralen in combination with long wavelength ultraviolet irradiation. The results show that the DNA synthesis is strongly inhibited (approximately 95%) at 200 ng/ml reaching a minimum within 2 hours while RNA synthesis is only weakly affected at this concentration (approximately 40% inhibition). At 2 micrograms/ml the RNA synthesis is inhibited approximately 90%. Even at this concentration only a moderate effect is seen on the protein synthesis. These results strongly indicate that the phototoxic action of 8-methoxypsoralen is primarily due to inhibition of DNA synthesis.  相似文献   

13.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

14.
Isolated rat hepatocytes were used as an in vitro model to investigate A possible interaction between oxytetracycline (OXT) and aflatoxin B1 (AFB1). LDH leakage, RNA and protein synthesis and glycogen accumulation were measured in the presence of both drugs, either separately or in combination. The evolution of LDH leakage during the incubation was identical in untreated and treated cells. AFB1 inhibited RNA and protein synthesis at a concentration of 10–7 M and 10–6 M, respectively, and higher, whereas OXT did not influence RNA synthesis but inhibited protein synthesis at the highest tested concentration, 10–3 M. As far as glycogen is concerned, rats were injected with glucagon before sacrifice in order to obtain a constant synthesis rate in isolated hepatocytes. AFB1 inhibited the accumulation of glycogen from 10–6 M upward. This effect was never observed before 90 min of incubation. OXT had no effect on glycogen synthesis. In the presence of both drugs, no interaction was demonstrated as far as RNA and protein synthesis were concerned, but OXT opposed the inhibition induced by AFB1 on glycogen accumulation. If the in vivo protection, provided by OXT against AFBI-induced toxicity, is due to a direct interference in the toxic mechanisms of the mycotoxin, these results show that OXT does not influence the AFB1-inhibition of RNA and protein synthesis. The latter are early and sensitive parameters inhibited by AFB1. On the contrary, taking into consideration the results on glycogen accumulation, it seems more interesting to investigate further this metabolism.Abbreviations AFB1 Aflatoxin B1 - OXT Oxytetracycline - DMEM Dulbecco's Modified Eagle's Medium - LDH Lactate Dehydrogenase - DMSO Dimethyl Sulfoxide - BSA Bovine Serum Albumin  相似文献   

15.
Intact and excised cultured pea roots (Pisum sativum L. cv Alaska) were treated with chlorsulfuron at concentrations ranging from 2.8 ×10–4 M to 2.8×10–6 M. At all concentrations this chemical was demonstrated to inhibit the progression of cells from G2 to mitosis (M) and secondarily from G1 to DNA synthesis (S). The S and M phases were not directly affected, but the transition steps into those phases were inhibited. Total protein synthesis was unaffected by treatment of intact roots with 2.8×10–6 M chlorsulfuron. RNA synthesis was inhibited by 43% over a 24-h treatment period. It is hypothesized that chlorsulfuron inhibits cell cycle progression by blocking the G2 and G1 transition points through inhibition of cell cycle specific RNA synthesis.  相似文献   

16.
The effects of some local anesthetics on plasma protein secretion by rat liver slices have been studied and have been compared with those of colchicine. Rat liver slices were pulse-labelled with l-[14C]leucine for 9 min at 37°C, collected on filter paper, washed with non-radioactive leucine and reincubated in the presence or absence of the drug to be tested. The radioactive plasma proteins produced were obtained by immunoprecipitation from either the chase medium or from the washed slices. Chlorpomazine, (3 · 10?5 M), dibucaine (10?5 M), lidocaine (10?3 M) and procaine (5 · 10?5 M) inhibited both the synthesis and secretion of plasma protein but did not affect the uptake of l-leucine into the slices nor the incorporation of phosphate into intracellular nucleotide phosphates or into phopholipids. The inhibition of secretion elicited by these drugs is probably not due to the inhibition of protein synthesis since cycloheximide, when added to the chase medium at a concentration which completely inhibits protein synthesis, did not inhibit plasma protein secretion, while cycloheximide plus procaine did inhibit secretion and also caused a retention of non-secreted plasma proteins within the slices. Unlike colchicine, howover, procaine did not cause the retained plasma proteins to accumulate in Goli-derived secretory vesicles, but showed a more general effect causing a distribution among several cell fractions.  相似文献   

17.
18.
The mode of action of helenalin and bis(helenalinyl) malonate as protein synthesis inhibitors of P-388 lymphocytic leukemia cells was investigated. The initial characterizations were carried out in crude lysates of the P-388 cells. In the lysate, there was a 4 min lag after the addition of drug before inhibition of protein synthesis occurred. Both drugs allowed run-off of preformed polysomes, but did significantly inhibit the formation of the 80 S initiation complex suggesting a preferential inhibition of one or more initiation reactions. The effect of these drugs on inhibition of both elongation and initiation reactions was further investigated using more fractionated systems prepared from P-388 cells. Poly(U)-directed polyphenylalanine synthesis was marginally inhibited by both drugs, but the degree of inhibition was not sufficient to explain the inhibition observed in either the lysate or in whole cell preparations of P-388. The formation of the ternary initiation complex was not significantly inhibited by either drug, but the conversion of this complex to the 48 and 80 S initiation complexes was inhibited. The inhibition of 48 S initiation complex formation by both drugs was sufficient to explain their inhibition of protein synthesis in whole cells.  相似文献   

19.
The effects of an osmotic shock (300 m M mannitol, –0. 67 MPa) or/and increased external hydrostatic pressure on seedlings (42-h-germinated seeds) of radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) were investigated. The osmotic shock did not inhibit H+ extrusion and net K- uptake, and did not affect the levels of malic acid, reducing sugars, sucrose or amino acids or of the energy charge (i. e. the synthesis of energy-rich phosphate bonds), but inhibited the synthesis of proteins. RNA and DNA, measured as incorporation of labelled precursors. When the osmotic shock was applied together with an increased external hydrostatic pressure of the same magnitude (+0. 67 MPa), the same metabolic parameters and the inhibition of synthesis of RNA and DNA were not substantially affected, while the inhibition of protein synthesis was practically reversed and the energy charge decreased; the recovery of protein synthesis was not due to a change in labelled leucine uptake capability. Increased external hydrostatic pressure alone decreased the energy charge without affecting the other parameters considered.
The possibility that protein synthesis activity is directly controlled by cell turgor pressure (internal hydrostatic pressure) is discussed.  相似文献   

20.
Addition of cycloheximide to growth medium of neonatal rat heart cell cultures prevented cell-substratum attachment. Even concentrations of cycloheximide which inhibited only 50% of normal protein synthesis prevented some cells from attaching. Cells which required the longest time to attach were most dependent on protein synthesis. The kinetics of cell-substratum adhesion in the presence of various concentrations of cycloheximide supported the hypothesis that repair of damaged cell membranes was required prior to attachment. An alternate hypothesis that protein synthesis was required for substratum attachment either to synthesize new unique proteins or higher concentrations of existing proteins not damaged by enzymes was not supported by experimentally obtained data. If the second hypothesis were true, no cells would have attached when protein synthesis was completely inhibited (greater than 95%) and all cells should have been equally affected by protein synthesis inhibition; such was not the case. Inhibition of mRNA formation by actinomycin D also should have inhibited attachement completely and this was not observed. Since attachment was minimally affected by actinomycin D, protein synthesis on long-lived mRNA was apparently sufficient for cell-substratum adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号